1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Inverse Complex Hyperbolic Functions</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Inverse Complex Hyperbolic Functions">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Inverse Complex Hyperbolic Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Complex-Numbers.html#Complex-Numbers" rel="up" title="Complex Numbers">
<link href="Complex-Number-References-and-Further-Reading.html#Complex-Number-References-and-Further-Reading" rel="next" title="Complex Number References and Further Reading">
<link href="Complex-Hyperbolic-Functions.html#Complex-Hyperbolic-Functions" rel="previous" title="Complex Hyperbolic Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Inverse-Complex-Hyperbolic-Functions"></a>
<div class="header">
<p>
Next: <a href="Complex-Number-References-and-Further-Reading.html#Complex-Number-References-and-Further-Reading" accesskey="n" rel="next">Complex Number References and Further Reading</a>, Previous: <a href="Complex-Hyperbolic-Functions.html#Complex-Hyperbolic-Functions" accesskey="p" rel="previous">Complex Hyperbolic Functions</a>, Up: <a href="Complex-Numbers.html#Complex-Numbers" accesskey="u" rel="up">Complex Numbers</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Inverse-Complex-Hyperbolic-Functions-1"></a>
<h3 class="section">5.8 Inverse Complex Hyperbolic Functions</h3>
<a name="index-inverse-hyperbolic-functions_002c-complex-numbers"></a>
<dl>
<dt><a name="index-gsl_005fcomplex_005farcsinh"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arcsinh</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arcsine of the
complex number <var>z</var>, <em>\arcsinh(z)</em>. The branch cuts are on the
imaginary axis, below <em>-i</em> and above <em>i</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farccosh"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccosh</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arccosine of the complex
number <var>z</var>, <em>\arccosh(z)</em>. The branch cut is on the real
axis, less than <em>1</em>. Note that in this case we use the negative
square root in formula 4.6.21 of Abramowitz & Stegun giving
<em>\arccosh(z)=\log(z-\sqrt{z^2-1})</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farccosh_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccosh_real</strong> <em>(double <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arccosine of
the real number <var>z</var>, <em>\arccosh(z)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farctanh"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arctanh</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arctangent of the complex
number <var>z</var>, <em>\arctanh(z)</em>. The branch cuts are on the real
axis, less than <em>-1</em> and greater than <em>1</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farctanh_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arctanh_real</strong> <em>(double <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arctangent of the real
number <var>z</var>, <em>\arctanh(z)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farcsech"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arcsech</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arcsecant of the complex
number <var>z</var>, <em>\arcsech(z) = \arccosh(1/z)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farccsch"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccsch</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arccosecant of the complex
number <var>z</var>, <em>\arccsch(z) = \arcsin(1/z)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farccoth"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccoth</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arccotangent of the complex
number <var>z</var>, <em>\arccoth(z) = \arctanh(1/z)</em>.
</p></dd></dl>
</body>
</html>
|