File: Inverse-Complex-Hyperbolic-Functions.html

package info (click to toggle)
gsl-ref-html 2.3-1
  • links: PTS
  • area: non-free
  • in suites: bullseye, buster, sid
  • size: 6,876 kB
  • ctags: 4,574
  • sloc: makefile: 35
file content (131 lines) | stat: -rw-r--r-- 6,831 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".

(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: Inverse Complex Hyperbolic Functions</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: Inverse Complex Hyperbolic Functions">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: Inverse Complex Hyperbolic Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Complex-Numbers.html#Complex-Numbers" rel="up" title="Complex Numbers">
<link href="Complex-Number-References-and-Further-Reading.html#Complex-Number-References-and-Further-Reading" rel="next" title="Complex Number References and Further Reading">
<link href="Complex-Hyperbolic-Functions.html#Complex-Hyperbolic-Functions" rel="previous" title="Complex Hyperbolic Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Inverse-Complex-Hyperbolic-Functions"></a>
<div class="header">
<p>
Next: <a href="Complex-Number-References-and-Further-Reading.html#Complex-Number-References-and-Further-Reading" accesskey="n" rel="next">Complex Number References and Further Reading</a>, Previous: <a href="Complex-Hyperbolic-Functions.html#Complex-Hyperbolic-Functions" accesskey="p" rel="previous">Complex Hyperbolic Functions</a>, Up: <a href="Complex-Numbers.html#Complex-Numbers" accesskey="u" rel="up">Complex Numbers</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Inverse-Complex-Hyperbolic-Functions-1"></a>
<h3 class="section">5.8 Inverse Complex Hyperbolic Functions</h3>
<a name="index-inverse-hyperbolic-functions_002c-complex-numbers"></a>

<dl>
<dt><a name="index-gsl_005fcomplex_005farcsinh"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arcsinh</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arcsine of the
complex number <var>z</var>, <em>\arcsinh(z)</em>.  The branch cuts are on the
imaginary axis, below <em>-i</em> and above <em>i</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005farccosh"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccosh</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arccosine of the complex
number <var>z</var>, <em>\arccosh(z)</em>.  The branch cut is on the real
axis, less than <em>1</em>.  Note that in this case we use the negative
square root in formula 4.6.21 of Abramowitz &amp; Stegun giving
<em>\arccosh(z)=\log(z-\sqrt{z^2-1})</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005farccosh_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccosh_real</strong> <em>(double <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arccosine of
the real number <var>z</var>, <em>\arccosh(z)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005farctanh"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arctanh</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arctangent of the complex
number <var>z</var>, <em>\arctanh(z)</em>.  The branch cuts are on the real
axis, less than <em>-1</em> and greater than <em>1</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005farctanh_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arctanh_real</strong> <em>(double <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arctangent of the real
number <var>z</var>, <em>\arctanh(z)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005farcsech"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arcsech</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arcsecant of the complex
number <var>z</var>, <em>\arcsech(z) = \arccosh(1/z)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005farccsch"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccsch</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arccosecant of the complex
number <var>z</var>, <em>\arccsch(z) = \arcsin(1/z)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005farccoth"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccoth</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex hyperbolic arccotangent of the complex
number <var>z</var>, <em>\arccoth(z) = \arctanh(1/z)</em>.
</p></dd></dl>




</body>
</html>