1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Inverse Complex Trigonometric Functions</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Inverse Complex Trigonometric Functions">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Inverse Complex Trigonometric Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Complex-Numbers.html#Complex-Numbers" rel="up" title="Complex Numbers">
<link href="Complex-Hyperbolic-Functions.html#Complex-Hyperbolic-Functions" rel="next" title="Complex Hyperbolic Functions">
<link href="Complex-Trigonometric-Functions.html#Complex-Trigonometric-Functions" rel="previous" title="Complex Trigonometric Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Inverse-Complex-Trigonometric-Functions"></a>
<div class="header">
<p>
Next: <a href="Complex-Hyperbolic-Functions.html#Complex-Hyperbolic-Functions" accesskey="n" rel="next">Complex Hyperbolic Functions</a>, Previous: <a href="Complex-Trigonometric-Functions.html#Complex-Trigonometric-Functions" accesskey="p" rel="previous">Complex Trigonometric Functions</a>, Up: <a href="Complex-Numbers.html#Complex-Numbers" accesskey="u" rel="up">Complex Numbers</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Inverse-Complex-Trigonometric-Functions-1"></a>
<h3 class="section">5.6 Inverse Complex Trigonometric Functions</h3>
<a name="index-inverse-complex-trigonometric-functions"></a>
<dl>
<dt><a name="index-gsl_005fcomplex_005farcsin"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arcsin</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex arcsine of the complex number <var>z</var>,
<em>\arcsin(z)</em>. The branch cuts are on the real axis, less than <em>-1</em>
and greater than <em>1</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farcsin_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arcsin_real</strong> <em>(double <var>z</var>)</em></dt>
<dd><p>This function returns the complex arcsine of the real number <var>z</var>,
<em>\arcsin(z)</em>. For <em>z</em> between <em>-1</em> and <em>1</em>, the
function returns a real value in the range <em>[-\pi/2,\pi/2]</em>. For
<em>z</em> less than <em>-1</em> the result has a real part of <em>-\pi/2</em>
and a positive imaginary part. For <em>z</em> greater than <em>1</em> the
result has a real part of <em>\pi/2</em> and a negative imaginary part.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farccos"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccos</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex arccosine of the complex number <var>z</var>,
<em>\arccos(z)</em>. The branch cuts are on the real axis, less than <em>-1</em>
and greater than <em>1</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farccos_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccos_real</strong> <em>(double <var>z</var>)</em></dt>
<dd><p>This function returns the complex arccosine of the real number <var>z</var>,
<em>\arccos(z)</em>. For <em>z</em> between <em>-1</em> and <em>1</em>, the
function returns a real value in the range <em>[0,\pi]</em>. For <em>z</em>
less than <em>-1</em> the result has a real part of <em>\pi</em> and a
negative imaginary part. For <em>z</em> greater than <em>1</em> the result
is purely imaginary and positive.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farctan"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arctan</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex arctangent of the complex number
<var>z</var>, <em>\arctan(z)</em>. The branch cuts are on the imaginary axis,
below <em>-i</em> and above <em>i</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farcsec"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arcsec</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex arcsecant of the complex number <var>z</var>,
<em>\arcsec(z) = \arccos(1/z)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farcsec_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arcsec_real</strong> <em>(double <var>z</var>)</em></dt>
<dd><p>This function returns the complex arcsecant of the real number <var>z</var>,
<em>\arcsec(z) = \arccos(1/z)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farccsc"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccsc</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex arccosecant of the complex number <var>z</var>,
<em>\arccsc(z) = \arcsin(1/z)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farccsc_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccsc_real</strong> <em>(double <var>z</var>)</em></dt>
<dd><p>This function returns the complex arccosecant of the real number <var>z</var>,
<em>\arccsc(z) = \arcsin(1/z)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005farccot"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_arccot</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex arccotangent of the complex number <var>z</var>,
<em>\arccot(z) = \arctan(1/z)</em>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Complex-Hyperbolic-Functions.html#Complex-Hyperbolic-Functions" accesskey="n" rel="next">Complex Hyperbolic Functions</a>, Previous: <a href="Complex-Trigonometric-Functions.html#Complex-Trigonometric-Functions" accesskey="p" rel="previous">Complex Trigonometric Functions</a>, Up: <a href="Complex-Numbers.html#Complex-Numbers" accesskey="u" rel="up">Complex Numbers</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|