1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Legendre Form of Incomplete Elliptic Integrals</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Legendre Form of Incomplete Elliptic Integrals">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Legendre Form of Incomplete Elliptic Integrals">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Elliptic-Integrals.html#Elliptic-Integrals" rel="up" title="Elliptic Integrals">
<link href="Carlson-Forms.html#Carlson-Forms" rel="next" title="Carlson Forms">
<link href="Legendre-Form-of-Complete-Elliptic-Integrals.html#Legendre-Form-of-Complete-Elliptic-Integrals" rel="previous" title="Legendre Form of Complete Elliptic Integrals">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Legendre-Form-of-Incomplete-Elliptic-Integrals"></a>
<div class="header">
<p>
Next: <a href="Carlson-Forms.html#Carlson-Forms" accesskey="n" rel="next">Carlson Forms</a>, Previous: <a href="Legendre-Form-of-Complete-Elliptic-Integrals.html#Legendre-Form-of-Complete-Elliptic-Integrals" accesskey="p" rel="previous">Legendre Form of Complete Elliptic Integrals</a>, Up: <a href="Elliptic-Integrals.html#Elliptic-Integrals" accesskey="u" rel="up">Elliptic Integrals</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Legendre-Form-of-Incomplete-Elliptic-Integrals-1"></a>
<h4 class="subsection">7.13.4 Legendre Form of Incomplete Elliptic Integrals</h4>
<dl>
<dt><a name="index-gsl_005fsf_005fellint_005fF"></a>Function: <em>double</em> <strong>gsl_sf_ellint_F</strong> <em>(double <var>phi</var>, double <var>k</var>, gsl_mode_t <var>mode</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fellint_005fF_005fe"></a>Function: <em>int</em> <strong>gsl_sf_ellint_F_e</strong> <em>(double <var>phi</var>, double <var>k</var>, gsl_mode_t <var>mode</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the incomplete elliptic integral <em>F(\phi,k)</em>
to the accuracy specified by the mode variable <var>mode</var>.
Note that Abramowitz & Stegun define this function in terms of the
parameter <em>m = k^2</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fellint_005fE"></a>Function: <em>double</em> <strong>gsl_sf_ellint_E</strong> <em>(double <var>phi</var>, double <var>k</var>, gsl_mode_t <var>mode</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fellint_005fE_005fe"></a>Function: <em>int</em> <strong>gsl_sf_ellint_E_e</strong> <em>(double <var>phi</var>, double <var>k</var>, gsl_mode_t <var>mode</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the incomplete elliptic integral <em>E(\phi,k)</em>
to the accuracy specified by the mode variable <var>mode</var>.
Note that Abramowitz & Stegun define this function in terms of the
parameter <em>m = k^2</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fellint_005fP"></a>Function: <em>double</em> <strong>gsl_sf_ellint_P</strong> <em>(double <var>phi</var>, double <var>k</var>, double <var>n</var>, gsl_mode_t <var>mode</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fellint_005fP_005fe"></a>Function: <em>int</em> <strong>gsl_sf_ellint_P_e</strong> <em>(double <var>phi</var>, double <var>k</var>, double <var>n</var>, gsl_mode_t <var>mode</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the incomplete elliptic integral <em>\Pi(\phi,k,n)</em>
to the accuracy specified by the mode variable <var>mode</var>.
Note that Abramowitz & Stegun define this function in terms of the
parameters <em>m = k^2</em> and <em>\sin^2(\alpha) = k^2</em>, with the
change of sign <em>n \to -n</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fellint_005fD"></a>Function: <em>double</em> <strong>gsl_sf_ellint_D</strong> <em>(double <var>phi</var>, double <var>k</var>, gsl_mode_t <var>mode</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fellint_005fD_005fe"></a>Function: <em>int</em> <strong>gsl_sf_ellint_D_e</strong> <em>(double <var>phi</var>, double <var>k</var>, gsl_mode_t <var>mode</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These functions compute the incomplete elliptic integral
<em>D(\phi,k)</em> which is defined through the Carlson form <em>RD(x,y,z)</em>
by the following relation,
</p>
<div class="example">
<pre class="example">D(\phi,k) = (1/3)(\sin(\phi))^3 RD (1-\sin^2(\phi), 1-k^2 \sin^2(\phi), 1).
</pre></div>
</dd></dl>
</body>
</html>
|