1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Linear Algebra</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Linear Algebra">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Linear Algebra">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="index.html#Top" rel="up" title="Top">
<link href="LU-Decomposition.html#LU-Decomposition" rel="next" title="LU Decomposition">
<link href="BLAS-References-and-Further-Reading.html#BLAS-References-and-Further-Reading" rel="previous" title="BLAS References and Further Reading">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Linear-Algebra"></a>
<div class="header">
<p>
Next: <a href="Eigensystems.html#Eigensystems" accesskey="n" rel="next">Eigensystems</a>, Previous: <a href="BLAS-Support.html#BLAS-Support" accesskey="p" rel="previous">BLAS Support</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Linear-Algebra-1"></a>
<h2 class="chapter">14 Linear Algebra</h2>
<a name="index-linear-algebra"></a>
<a name="index-solution-of-linear-systems_002c-Ax_003db"></a>
<a name="index-matrix-factorization"></a>
<a name="index-factorization-of-matrices"></a>
<p>This chapter describes functions for solving linear systems. The
library provides linear algebra operations which operate directly on
the <code>gsl_vector</code> and <code>gsl_matrix</code> objects. These routines
use the standard algorithms from Golub & Van Loan’s <cite>Matrix
Computations</cite> with Level-1 and Level-2 BLAS calls for efficiency.
</p>
<p>The functions described in this chapter are declared in the header file
<samp>gsl_linalg.h</samp>.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="LU-Decomposition.html#LU-Decomposition" accesskey="1">LU Decomposition</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="QR-Decomposition.html#QR-Decomposition" accesskey="2">QR Decomposition</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="QR-Decomposition-with-Column-Pivoting.html#QR-Decomposition-with-Column-Pivoting" accesskey="3">QR Decomposition with Column Pivoting</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Complete-Orthogonal-Decomposition.html#Complete-Orthogonal-Decomposition" accesskey="4">Complete Orthogonal Decomposition</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Singular-Value-Decomposition.html#Singular-Value-Decomposition" accesskey="5">Singular Value Decomposition</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Cholesky-Decomposition.html#Cholesky-Decomposition" accesskey="6">Cholesky Decomposition</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Pivoted-Cholesky-Decomposition.html#Pivoted-Cholesky-Decomposition" accesskey="7">Pivoted Cholesky Decomposition</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Modified-Cholesky-Decomposition.html#Modified-Cholesky-Decomposition" accesskey="8">Modified Cholesky Decomposition</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Tridiagonal-Decomposition-of-Real-Symmetric-Matrices.html#Tridiagonal-Decomposition-of-Real-Symmetric-Matrices" accesskey="9">Tridiagonal Decomposition of Real Symmetric Matrices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Tridiagonal-Decomposition-of-Hermitian-Matrices.html#Tridiagonal-Decomposition-of-Hermitian-Matrices">Tridiagonal Decomposition of Hermitian Matrices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Hessenberg-Decomposition-of-Real-Matrices.html#Hessenberg-Decomposition-of-Real-Matrices">Hessenberg Decomposition of Real Matrices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Hessenberg_002dTriangular-Decomposition-of-Real-Matrices.html#Hessenberg_002dTriangular-Decomposition-of-Real-Matrices">Hessenberg-Triangular Decomposition of Real Matrices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Bidiagonalization.html#Bidiagonalization">Bidiagonalization</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Givens-Rotations.html#Givens-Rotations">Givens Rotations</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Householder-Transformations.html#Householder-Transformations">Householder Transformations</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Householder-solver-for-linear-systems.html#Householder-solver-for-linear-systems">Householder solver for linear systems</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Tridiagonal-Systems.html#Tridiagonal-Systems">Tridiagonal Systems</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Triangular-Systems.html#Triangular-Systems">Triangular Systems</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Balancing.html#Balancing">Balancing</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Linear-Algebra-Examples.html#Linear-Algebra-Examples">Linear Algebra Examples</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Linear-Algebra-References-and-Further-Reading.html#Linear-Algebra-References-and-Further-Reading">Linear Algebra References and Further Reading</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<div class="header">
<p>
Next: <a href="Eigensystems.html#Eigensystems" accesskey="n" rel="next">Eigensystems</a>, Previous: <a href="BLAS-Support.html#BLAS-Support" accesskey="p" rel="previous">BLAS Support</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|