File: Nonlinear-Least_002dSquares-Geodesic-Acceleration-Example.html

package info (click to toggle)
gsl-ref-html 2.3-1
  • links: PTS
  • area: non-free
  • in suites: bullseye, buster, sid
  • size: 6,876 kB
  • ctags: 4,574
  • sloc: makefile: 35
file content (322 lines) | stat: -rw-r--r-- 11,768 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".

(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: Nonlinear Least-Squares Geodesic Acceleration Example</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: Nonlinear Least-Squares Geodesic Acceleration Example">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: Nonlinear Least-Squares Geodesic Acceleration Example">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Nonlinear-Least_002dSquares-Examples.html#Nonlinear-Least_002dSquares-Examples" rel="up" title="Nonlinear Least-Squares Examples">
<link href="Nonlinear-Least_002dSquares-Comparison-Example.html#Nonlinear-Least_002dSquares-Comparison-Example" rel="next" title="Nonlinear Least-Squares Comparison Example">
<link href="Nonlinear-Least_002dSquares-Exponential-Fit-Example.html#Nonlinear-Least_002dSquares-Exponential-Fit-Example" rel="previous" title="Nonlinear Least-Squares Exponential Fit Example">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Nonlinear-Least_002dSquares-Geodesic-Acceleration-Example"></a>
<div class="header">
<p>
Next: <a href="Nonlinear-Least_002dSquares-Comparison-Example.html#Nonlinear-Least_002dSquares-Comparison-Example" accesskey="n" rel="next">Nonlinear Least-Squares Comparison Example</a>, Previous: <a href="Nonlinear-Least_002dSquares-Exponential-Fit-Example.html#Nonlinear-Least_002dSquares-Exponential-Fit-Example" accesskey="p" rel="previous">Nonlinear Least-Squares Exponential Fit Example</a>, Up: <a href="Nonlinear-Least_002dSquares-Examples.html#Nonlinear-Least_002dSquares-Examples" accesskey="u" rel="up">Nonlinear Least-Squares Examples</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Geodesic-Acceleration-Example"></a>
<h4 class="subsection">39.12.2 Geodesic Acceleration Example</h4>

<p>The following example program minimizes a modified Rosenbrock function,
which is characterized by a narrow canyon with steep walls. The
starting point is selected high on the canyon wall, so the solver
must first find the canyon bottom and then navigate to the minimum.
The problem is solved both with and without using geodesic acceleration
for comparison. The cost function is given by
</p>
<div class="example">
<pre class="example">Phi(x) = 1/2 (f1^2 + f2^2)
f1 = 100 ( x2 - x1^2 )
f2 = 1 - x1
</pre></div>

<p>The Jacobian matrix is given by
</p>
<div class="example">
<pre class="example">J = [ -200*x1 100 ; -1 0 ]
</pre></div>

<p>In order to use geodesic acceleration, the user must provide
the second directional derivative of each residual in the
velocity direction,
<em>D_v^2 f_i = \sum_{\alpha\beta} v_{\alpha} v_{\beta} \partial_{\alpha} \partial_{\beta} f_i</em>.
The velocity vector <em>v</em> is provided by the solver. For this example,
these derivatives are given by
</p>
<div class="example">
<pre class="example">fvv = [ -200 v1^2 ; 0 ]
</pre></div>

<p>The solution of this minimization problem is given by
</p>
<div class="example">
<pre class="example">x* = [ 1 ; 1 ]
Phi(x*) = 0
</pre></div>

<p>The program output is shown below.
</p>
<div class="smallexample">
<pre class="smallexample">=== Solving system without acceleration ===
NITER         = 53
NFEV          = 56
NJEV          = 54
NAEV          = 0
initial cost  = 2.250225000000e+04
final cost    = 6.674986031430e-18
final x       = (9.999999974165e-01, 9.999999948328e-01)
final cond(J) = 6.000096055094e+02
=== Solving system with acceleration ===
NITER         = 15
NFEV          = 17
NJEV          = 16
NAEV          = 16
initial cost  = 2.250225000000e+04
final cost    = 7.518932873279e-19
final x       = (9.999999991329e-01, 9.999999982657e-01)
final cond(J) = 6.000097233278e+02
</pre></div>

<p>We can see that enabling geodesic acceleration requires less
than a third of the number of Jacobian evaluations in order to locate
the minimum. The path taken by both methods is shown in the
figure below. The contours show the cost function
<em>\Phi(x_1,x_2)</em>. We see that both methods quickly
find the canyon bottom, but the geodesic acceleration method
navigates along the bottom to the solution with significantly
fewer iterations.
</p>

<p>The program is given below.
</p>
<div class="example">
<pre class="verbatim">#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;gsl/gsl_vector.h&gt;
#include &lt;gsl/gsl_matrix.h&gt;
#include &lt;gsl/gsl_blas.h&gt;
#include &lt;gsl/gsl_multifit_nlinear.h&gt;

int
func_f (const gsl_vector * x, void *params, gsl_vector * f)
{
  double x1 = gsl_vector_get(x, 0);
  double x2 = gsl_vector_get(x, 1);

  gsl_vector_set(f, 0, 100.0 * (x2 - x1*x1));
  gsl_vector_set(f, 1, 1.0 - x1);

  return GSL_SUCCESS;
}

int
func_df (const gsl_vector * x, void *params, gsl_matrix * J)
{
  double x1 = gsl_vector_get(x, 0);

  gsl_matrix_set(J, 0, 0, -200.0*x1);
  gsl_matrix_set(J, 0, 1, 100.0);
  gsl_matrix_set(J, 1, 0, -1.0);
  gsl_matrix_set(J, 1, 1, 0.0);

  return GSL_SUCCESS;
}

int
func_fvv (const gsl_vector * x, const gsl_vector * v,
          void *params, gsl_vector * fvv)
{
  double v1 = gsl_vector_get(v, 0);

  gsl_vector_set(fvv, 0, -200.0 * v1 * v1);
  gsl_vector_set(fvv, 1, 0.0);

  return GSL_SUCCESS;
}

void
callback(const size_t iter, void *params,
         const gsl_multifit_nlinear_workspace *w)
{
  gsl_vector * x = gsl_multifit_nlinear_position(w);

  /* print out current location */
  printf(&quot;%f %f\n&quot;,
         gsl_vector_get(x, 0),
         gsl_vector_get(x, 1));
}

void
solve_system(gsl_vector *x0, gsl_multifit_nlinear_fdf *fdf,
             gsl_multifit_nlinear_parameters *params)
{
  const gsl_multifit_nlinear_type *T = gsl_multifit_nlinear_trust;
  const size_t max_iter = 200;
  const double xtol = 1.0e-8;
  const double gtol = 1.0e-8;
  const double ftol = 1.0e-8;
  const size_t n = fdf-&gt;n;
  const size_t p = fdf-&gt;p;
  gsl_multifit_nlinear_workspace *work =
    gsl_multifit_nlinear_alloc(T, params, n, p);
  gsl_vector * f = gsl_multifit_nlinear_residual(work);
  gsl_vector * x = gsl_multifit_nlinear_position(work);
  int info;
  double chisq0, chisq, rcond;

  /* initialize solver */
  gsl_multifit_nlinear_init(x0, fdf, work);

  /* store initial cost */
  gsl_blas_ddot(f, f, &amp;chisq0);

  /* iterate until convergence */
  gsl_multifit_nlinear_driver(max_iter, xtol, gtol, ftol,
                              callback, NULL, &amp;info, work);

  /* store final cost */
  gsl_blas_ddot(f, f, &amp;chisq);

  /* store cond(J(x)) */
  gsl_multifit_nlinear_rcond(&amp;rcond, work);

  /* print summary */

  fprintf(stderr, &quot;NITER         = %zu\n&quot;, gsl_multifit_nlinear_niter(work));
  fprintf(stderr, &quot;NFEV          = %zu\n&quot;, fdf-&gt;nevalf);
  fprintf(stderr, &quot;NJEV          = %zu\n&quot;, fdf-&gt;nevaldf);
  fprintf(stderr, &quot;NAEV          = %zu\n&quot;, fdf-&gt;nevalfvv);
  fprintf(stderr, &quot;initial cost  = %.12e\n&quot;, chisq0);
  fprintf(stderr, &quot;final cost    = %.12e\n&quot;, chisq);
  fprintf(stderr, &quot;final x       = (%.12e, %.12e)\n&quot;,
          gsl_vector_get(x, 0), gsl_vector_get(x, 1));
  fprintf(stderr, &quot;final cond(J) = %.12e\n&quot;, 1.0 / rcond);

  printf(&quot;\n\n&quot;);

  gsl_multifit_nlinear_free(work);
}

int
main (void)
{
  const size_t n = 2;
  const size_t p = 2;
  gsl_vector *f = gsl_vector_alloc(n);
  gsl_vector *x = gsl_vector_alloc(p);
  gsl_multifit_nlinear_fdf fdf;
  gsl_multifit_nlinear_parameters fdf_params =
    gsl_multifit_nlinear_default_parameters();

  /* print map of Phi(x1, x2) */
  {
    double x1, x2, chisq;
    double *f1 = gsl_vector_ptr(f, 0);
    double *f2 = gsl_vector_ptr(f, 1);

    for (x1 = -1.2; x1 &lt; 1.3; x1 += 0.1)
      {
        for (x2 = -0.5; x2 &lt; 2.1; x2 += 0.1)
          {
            gsl_vector_set(x, 0, x1);
            gsl_vector_set(x, 1, x2);
            func_f(x, NULL, f);

            chisq = (*f1) * (*f1) + (*f2) * (*f2);
            printf(&quot;%f %f %f\n&quot;, x1, x2, chisq);
          }
        printf(&quot;\n&quot;);
      }
    printf(&quot;\n\n&quot;);
  }

  /* define function to be minimized */
  fdf.f = func_f;
  fdf.df = func_df;
  fdf.fvv = func_fvv;
  fdf.n = n;
  fdf.p = p;
  fdf.params = NULL;

  /* starting point */
  gsl_vector_set(x, 0, -0.5);
  gsl_vector_set(x, 1, 1.75);

  fprintf(stderr, &quot;=== Solving system without acceleration ===\n&quot;);
  fdf_params.trs = gsl_multifit_nlinear_trs_lm;
  solve_system(x, &amp;fdf, &amp;fdf_params);

  fprintf(stderr, &quot;=== Solving system with acceleration ===\n&quot;);
  fdf_params.trs = gsl_multifit_nlinear_trs_lmaccel;
  solve_system(x, &amp;fdf, &amp;fdf_params);

  gsl_vector_free(f);
  gsl_vector_free(x);

  return 0;
}
</pre></div>

<hr>
<div class="header">
<p>
Next: <a href="Nonlinear-Least_002dSquares-Comparison-Example.html#Nonlinear-Least_002dSquares-Comparison-Example" accesskey="n" rel="next">Nonlinear Least-Squares Comparison Example</a>, Previous: <a href="Nonlinear-Least_002dSquares-Exponential-Fit-Example.html#Nonlinear-Least_002dSquares-Exponential-Fit-Example" accesskey="p" rel="previous">Nonlinear Least-Squares Exponential Fit Example</a>, Up: <a href="Nonlinear-Least_002dSquares-Examples.html#Nonlinear-Least_002dSquares-Examples" accesskey="u" rel="up">Nonlinear Least-Squares Examples</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>