1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Numerical Integration Introduction</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Numerical Integration Introduction">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Numerical Integration Introduction">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Numerical-Integration.html#Numerical-Integration" rel="up" title="Numerical Integration">
<link href="Integrands-without-weight-functions.html#Integrands-without-weight-functions" rel="next" title="Integrands without weight functions">
<link href="Numerical-Integration.html#Numerical-Integration" rel="previous" title="Numerical Integration">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Numerical-Integration-Introduction"></a>
<div class="header">
<p>
Next: <a href="QNG-non_002dadaptive-Gauss_002dKronrod-integration.html#QNG-non_002dadaptive-Gauss_002dKronrod-integration" accesskey="n" rel="next">QNG non-adaptive Gauss-Kronrod integration</a>, Up: <a href="Numerical-Integration.html#Numerical-Integration" accesskey="u" rel="up">Numerical Integration</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Introduction-2"></a>
<h3 class="section">17.1 Introduction</h3>
<p>Each algorithm computes an approximation to a definite integral of the
form,
</p>
<div class="example">
<pre class="example">I = \int_a^b f(x) w(x) dx
</pre></div>
<p>where <em>w(x)</em> is a weight function (for general integrands <em>w(x)=1</em>).
The user provides absolute and relative error bounds
<em>(epsabs, epsrel)</em> which specify the following accuracy requirement,
</p>
<div class="example">
<pre class="example">|RESULT - I| <= max(epsabs, epsrel |I|)
</pre></div>
<p>where
<em>RESULT</em> is the numerical approximation obtained by the
algorithm. The algorithms attempt to estimate the absolute error
<em>ABSERR = |RESULT - I|</em> in such a way that the following inequality
holds,
</p>
<div class="example">
<pre class="example">|RESULT - I| <= ABSERR <= max(epsabs, epsrel |I|)
</pre></div>
<p>In short, the routines return the first approximation
which has an absolute error smaller than <em>epsabs</em> or a relative error smaller than <em>epsrel</em>.
</p>
<p>Note that this is an <i>either-or</i> constraint,
not simultaneous. To compute to a specified absolute error, set <em>epsrel</em> to zero. To compute to a specified relative error,
set <em>epsabs</em> to zero.
The routines will fail to converge if the error bounds are too
stringent, but always return the best approximation obtained up to
that stage.
</p>
<p>The algorithms in <small>QUADPACK</small> use a naming convention based on the
following letters,
</p>
<div class="display">
<pre class="display"><code>Q</code> - quadrature routine
<code>N</code> - non-adaptive integrator
<code>A</code> - adaptive integrator
<code>G</code> - general integrand (user-defined)
<code>W</code> - weight function with integrand
<code>S</code> - singularities can be more readily integrated
<code>P</code> - points of special difficulty can be supplied
<code>I</code> - infinite range of integration
<code>O</code> - oscillatory weight function, cos or sin
<code>F</code> - Fourier integral
<code>C</code> - Cauchy principal value
</pre></div>
<p>The algorithms are built on pairs of quadrature rules, a higher order
rule and a lower order rule. The higher order rule is used to compute
the best approximation to an integral over a small range. The
difference between the results of the higher order rule and the lower
order rule gives an estimate of the error in the approximation.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="Integrands-without-weight-functions.html#Integrands-without-weight-functions" accesskey="1">Integrands without weight functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Integrands-with-weight-functions.html#Integrands-with-weight-functions" accesskey="2">Integrands with weight functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Integrands-with-singular-weight-functions.html#Integrands-with-singular-weight-functions" accesskey="3">Integrands with singular weight functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<div class="header">
<p>
Next: <a href="QNG-non_002dadaptive-Gauss_002dKronrod-integration.html#QNG-non_002dadaptive-Gauss_002dKronrod-integration" accesskey="n" rel="next">QNG non-adaptive Gauss-Kronrod integration</a>, Up: <a href="Numerical-Integration.html#Numerical-Integration" accesskey="u" rel="up">Numerical Integration</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|