File: Polynomial-Evaluation.html

package info (click to toggle)
gsl-ref-html 2.3-1
  • links: PTS
  • area: non-free
  • in suites: bullseye, buster, sid
  • size: 6,876 kB
  • ctags: 4,574
  • sloc: makefile: 35
file content (106 lines) | stat: -rw-r--r-- 5,588 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".

(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: Polynomial Evaluation</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: Polynomial Evaluation">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: Polynomial Evaluation">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Polynomials.html#Polynomials" rel="up" title="Polynomials">
<link href="Divided-Difference-Representation-of-Polynomials.html#Divided-Difference-Representation-of-Polynomials" rel="next" title="Divided Difference Representation of Polynomials">
<link href="Polynomials.html#Polynomials" rel="previous" title="Polynomials">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Polynomial-Evaluation"></a>
<div class="header">
<p>
Next: <a href="Divided-Difference-Representation-of-Polynomials.html#Divided-Difference-Representation-of-Polynomials" accesskey="n" rel="next">Divided Difference Representation of Polynomials</a>, Up: <a href="Polynomials.html#Polynomials" accesskey="u" rel="up">Polynomials</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Polynomial-Evaluation-1"></a>
<h3 class="section">6.1 Polynomial Evaluation</h3>
<a name="index-polynomial-evaluation"></a>
<a name="index-evaluation-of-polynomials"></a>

<p>The functions described here evaluate the polynomial 
<em>P(x) = c[0] + c[1] x + c[2] x^2 + \dots + c[len-1] x^{len-1}</em> using
Horner&rsquo;s method for stability. Inline versions of these functions are used when <code>HAVE_INLINE</code> is defined.
</p>
<dl>
<dt><a name="index-gsl_005fpoly_005feval"></a>Function: <em>double</em> <strong>gsl_poly_eval</strong> <em>(const double <var>c</var>[], const int <var>len</var>, const double <var>x</var>)</em></dt>
<dd><p>This function evaluates a polynomial with real coefficients for the real variable <var>x</var>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fpoly_005fcomplex_005feval"></a>Function: <em>gsl_complex</em> <strong>gsl_poly_complex_eval</strong> <em>(const double <var>c</var>[], const int <var>len</var>, const gsl_complex <var>z</var>)</em></dt>
<dd><p>This function evaluates a polynomial with real coefficients for the complex variable <var>z</var>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fpoly_005fcomplex_005feval"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_poly_complex_eval</strong> <em>(const gsl_complex <var>c</var>[], const int <var>len</var>, const gsl_complex <var>z</var>)</em></dt>
<dd><p>This function evaluates a polynomial with complex coefficients for the complex variable <var>z</var>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fpoly_005feval_005fderivs"></a>Function: <em>int</em> <strong>gsl_poly_eval_derivs</strong> <em>(const double <var>c</var>[], const size_t <var>lenc</var>, const double <var>x</var>, double <var>res</var>[], const size_t <var>lenres</var>)</em></dt>
<dd><p>This function evaluates a polynomial and its derivatives storing the
results in the array <var>res</var> of size <var>lenres</var>.  The output array
contains the values of <em>d^k P/d x^k</em> for the specified value of
<var>x</var> starting with <em>k = 0</em>.
</p></dd></dl>




</body>
</html>