1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: QAGI adaptive integration on infinite intervals</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: QAGI adaptive integration on infinite intervals">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: QAGI adaptive integration on infinite intervals">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Numerical-Integration.html#Numerical-Integration" rel="up" title="Numerical Integration">
<link href="QAWC-adaptive-integration-for-Cauchy-principal-values.html#QAWC-adaptive-integration-for-Cauchy-principal-values" rel="next" title="QAWC adaptive integration for Cauchy principal values">
<link href="QAGP-adaptive-integration-with-known-singular-points.html#QAGP-adaptive-integration-with-known-singular-points" rel="previous" title="QAGP adaptive integration with known singular points">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="QAGI-adaptive-integration-on-infinite-intervals"></a>
<div class="header">
<p>
Next: <a href="QAWC-adaptive-integration-for-Cauchy-principal-values.html#QAWC-adaptive-integration-for-Cauchy-principal-values" accesskey="n" rel="next">QAWC adaptive integration for Cauchy principal values</a>, Previous: <a href="QAGP-adaptive-integration-with-known-singular-points.html#QAGP-adaptive-integration-with-known-singular-points" accesskey="p" rel="previous">QAGP adaptive integration with known singular points</a>, Up: <a href="Numerical-Integration.html#Numerical-Integration" accesskey="u" rel="up">Numerical Integration</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="QAGI-adaptive-integration-on-infinite-intervals-1"></a>
<h3 class="section">17.6 QAGI adaptive integration on infinite intervals</h3>
<a name="index-QAGI-quadrature-algorithm"></a>
<dl>
<dt><a name="index-gsl_005fintegration_005fqagi"></a>Function: <em>int</em> <strong>gsl_integration_qagi</strong> <em>(gsl_function * <var>f</var>, double <var>epsabs</var>, double <var>epsrel</var>, size_t <var>limit</var>, gsl_integration_workspace * <var>workspace</var>, double * <var>result</var>, double * <var>abserr</var>)</em></dt>
<dd>
<p>This function computes the integral of the function <var>f</var> over the
infinite interval <em>(-\infty,+\infty)</em>. The integral is mapped onto the
semi-open interval <em>(0,1]</em> using the transformation <em>x = (1-t)/t</em>,
</p>
<div class="example">
<pre class="example">\int_{-\infty}^{+\infty} dx f(x) =
\int_0^1 dt (f((1-t)/t) + f((-1+t)/t))/t^2.
</pre></div>
<p>It is then integrated using the QAGS algorithm. The normal 21-point
Gauss-Kronrod rule of QAGS is replaced by a 15-point rule, because the
transformation can generate an integrable singularity at the origin. In
this case a lower-order rule is more efficient.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fintegration_005fqagiu"></a>Function: <em>int</em> <strong>gsl_integration_qagiu</strong> <em>(gsl_function * <var>f</var>, double <var>a</var>, double <var>epsabs</var>, double <var>epsrel</var>, size_t <var>limit</var>, gsl_integration_workspace * <var>workspace</var>, double * <var>result</var>, double * <var>abserr</var>)</em></dt>
<dd>
<p>This function computes the integral of the function <var>f</var> over the
semi-infinite interval <em>(a,+\infty)</em>. The integral is mapped onto the
semi-open interval <em>(0,1]</em> using the transformation <em>x = a + (1-t)/t</em>,
</p>
<div class="example">
<pre class="example">\int_{a}^{+\infty} dx f(x) =
\int_0^1 dt f(a + (1-t)/t)/t^2
</pre></div>
<p>and then integrated using the QAGS algorithm.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fintegration_005fqagil"></a>Function: <em>int</em> <strong>gsl_integration_qagil</strong> <em>(gsl_function * <var>f</var>, double <var>b</var>, double <var>epsabs</var>, double <var>epsrel</var>, size_t <var>limit</var>, gsl_integration_workspace * <var>workspace</var>, double * <var>result</var>, double * <var>abserr</var>)</em></dt>
<dd><p>This function computes the integral of the function <var>f</var> over the
semi-infinite interval <em>(-\infty,b)</em>. The integral is mapped onto the
semi-open interval <em>(0,1]</em> using the transformation <em>x = b - (1-t)/t</em>,
</p>
<div class="example">
<pre class="example">\int_{-\infty}^{b} dx f(x) =
\int_0^1 dt f(b - (1-t)/t)/t^2
</pre></div>
<p>and then integrated using the QAGS algorithm.
</p></dd></dl>
</body>
</html>
|