1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: QAWS adaptive integration for singular functions</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: QAWS adaptive integration for singular functions">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: QAWS adaptive integration for singular functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Numerical-Integration.html#Numerical-Integration" rel="up" title="Numerical Integration">
<link href="QAWO-adaptive-integration-for-oscillatory-functions.html#QAWO-adaptive-integration-for-oscillatory-functions" rel="next" title="QAWO adaptive integration for oscillatory functions">
<link href="QAWC-adaptive-integration-for-Cauchy-principal-values.html#QAWC-adaptive-integration-for-Cauchy-principal-values" rel="previous" title="QAWC adaptive integration for Cauchy principal values">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="QAWS-adaptive-integration-for-singular-functions"></a>
<div class="header">
<p>
Next: <a href="QAWO-adaptive-integration-for-oscillatory-functions.html#QAWO-adaptive-integration-for-oscillatory-functions" accesskey="n" rel="next">QAWO adaptive integration for oscillatory functions</a>, Previous: <a href="QAWC-adaptive-integration-for-Cauchy-principal-values.html#QAWC-adaptive-integration-for-Cauchy-principal-values" accesskey="p" rel="previous">QAWC adaptive integration for Cauchy principal values</a>, Up: <a href="Numerical-Integration.html#Numerical-Integration" accesskey="u" rel="up">Numerical Integration</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="QAWS-adaptive-integration-for-singular-functions-1"></a>
<h3 class="section">17.8 QAWS adaptive integration for singular functions</h3>
<a name="index-QAWS-quadrature-algorithm"></a>
<a name="index-singular-functions_002c-numerical-integration-of"></a>
<p>The QAWS algorithm is designed for integrands with algebraic-logarithmic
singularities at the end-points of an integration region. In order to
work efficiently the algorithm requires a precomputed table of
Chebyshev moments.
</p>
<dl>
<dt><a name="index-gsl_005fintegration_005fqaws_005ftable_005falloc"></a>Function: <em>gsl_integration_qaws_table *</em> <strong>gsl_integration_qaws_table_alloc</strong> <em>(double <var>alpha</var>, double <var>beta</var>, int <var>mu</var>, int <var>nu</var>)</em></dt>
<dd><a name="index-gsl_005fintegration_005fqaws_005ftable"></a>
<p>This function allocates space for a <code>gsl_integration_qaws_table</code>
struct describing a singular weight function
<em>W(x)</em> with the parameters <em>(\alpha, \beta, \mu, \nu)</em>,
</p>
<div class="example">
<pre class="example">W(x) = (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x)
</pre></div>
<p>where <em>\alpha > -1</em>, <em>\beta > -1</em>, and <em>\mu = 0, 1</em>,
<em>\nu = 0, 1</em>. The weight function can take four different forms
depending on the values of <em>\mu</em> and <em>\nu</em>,
</p>
<div class="example">
<pre class="example">W(x) = (x-a)^alpha (b-x)^beta (mu = 0, nu = 0)
W(x) = (x-a)^alpha (b-x)^beta log(x-a) (mu = 1, nu = 0)
W(x) = (x-a)^alpha (b-x)^beta log(b-x) (mu = 0, nu = 1)
W(x) = (x-a)^alpha (b-x)^beta log(x-a) log(b-x) (mu = 1, nu = 1)
</pre></div>
<p>The singular points <em>(a,b)</em> do not have to be specified until the
integral is computed, where they are the endpoints of the integration
range.
</p>
<p>The function returns a pointer to the newly allocated table
<code>gsl_integration_qaws_table</code> if no errors were detected, and 0 in
the case of error.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fintegration_005fqaws_005ftable_005fset"></a>Function: <em>int</em> <strong>gsl_integration_qaws_table_set</strong> <em>(gsl_integration_qaws_table * <var>t</var>, double <var>alpha</var>, double <var>beta</var>, int <var>mu</var>, int <var>nu</var>)</em></dt>
<dd><p>This function modifies the parameters <em>(\alpha, \beta, \mu, \nu)</em> of
an existing <code>gsl_integration_qaws_table</code> struct <var>t</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fintegration_005fqaws_005ftable_005ffree"></a>Function: <em>void</em> <strong>gsl_integration_qaws_table_free</strong> <em>(gsl_integration_qaws_table * <var>t</var>)</em></dt>
<dd><p>This function frees all the memory associated with the
<code>gsl_integration_qaws_table</code> struct <var>t</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fintegration_005fqaws"></a>Function: <em>int</em> <strong>gsl_integration_qaws</strong> <em>(gsl_function * <var>f</var>, const double <var>a</var>, const double <var>b</var>, gsl_integration_qaws_table * <var>t</var>, const double <var>epsabs</var>, const double <var>epsrel</var>, const size_t <var>limit</var>, gsl_integration_workspace * <var>workspace</var>, double * <var>result</var>, double * <var>abserr</var>)</em></dt>
<dd>
<p>This function computes the integral of the function <em>f(x)</em> over the
interval <em>(a,b)</em> with the singular weight function
<em>(x-a)^\alpha (b-x)^\beta \log^\mu (x-a) \log^\nu (b-x)</em>. The parameters
of the weight function <em>(\alpha, \beta, \mu, \nu)</em> are taken from the
table <var>t</var>. The integral is,
</p>
<div class="example">
<pre class="example">I = \int_a^b dx f(x) (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x).
</pre></div>
<p>The adaptive bisection algorithm of QAG is used. When a subinterval
contains one of the endpoints then a special 25-point modified
Clenshaw-Curtis rule is used to control the singularities. For
subintervals which do not include the endpoints an ordinary 15-point
Gauss-Kronrod integration rule is used.
</p>
</dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="QAWO-adaptive-integration-for-oscillatory-functions.html#QAWO-adaptive-integration-for-oscillatory-functions" accesskey="n" rel="next">QAWO adaptive integration for oscillatory functions</a>, Previous: <a href="QAWC-adaptive-integration-for-Cauchy-principal-values.html#QAWC-adaptive-integration-for-Cauchy-principal-values" accesskey="p" rel="previous">QAWC adaptive integration for Cauchy principal values</a>, Up: <a href="Numerical-Integration.html#Numerical-Integration" accesskey="u" rel="up">Numerical Integration</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|