File: Radial-Functions-for-Hyperbolic-Space.html

package info (click to toggle)
gsl-ref-html 2.3-1
  • links: PTS
  • area: non-free
  • in suites: bullseye, buster, sid
  • size: 6,876 kB
  • ctags: 4,574
  • sloc: makefile: 35
file content (121 lines) | stat: -rw-r--r-- 6,790 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".

(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: Radial Functions for Hyperbolic Space</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: Radial Functions for Hyperbolic Space">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: Radial Functions for Hyperbolic Space">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Legendre-Functions-and-Spherical-Harmonics.html#Legendre-Functions-and-Spherical-Harmonics" rel="up" title="Legendre Functions and Spherical Harmonics">
<link href="Logarithm-and-Related-Functions.html#Logarithm-and-Related-Functions" rel="next" title="Logarithm and Related Functions">
<link href="Conical-Functions.html#Conical-Functions" rel="previous" title="Conical Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Radial-Functions-for-Hyperbolic-Space"></a>
<div class="header">
<p>
Previous: <a href="Conical-Functions.html#Conical-Functions" accesskey="p" rel="previous">Conical Functions</a>, Up: <a href="Legendre-Functions-and-Spherical-Harmonics.html#Legendre-Functions-and-Spherical-Harmonics" accesskey="u" rel="up">Legendre Functions and Spherical Harmonics</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Radial-Functions-for-Hyperbolic-Space-1"></a>
<h4 class="subsection">7.24.4 Radial Functions for Hyperbolic Space</h4>

<p>The following spherical functions are specializations of Legendre
functions which give the regular eigenfunctions of the Laplacian on a
3-dimensional hyperbolic space <em>H3d</em>.  Of particular interest is
the flat limit, <em>\lambda \to \infty</em>, <em>\eta \to 0</em>,
<em>\lambda\eta</em> fixed.
</p>  
<dl>
<dt><a name="index-gsl_005fsf_005flegendre_005fH3d_005f0"></a>Function: <em>double</em> <strong>gsl_sf_legendre_H3d_0</strong> <em>(double <var>lambda</var>, double <var>eta</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005flegendre_005fH3d_005f0_005fe"></a>Function: <em>int</em> <strong>gsl_sf_legendre_H3d_0_e</strong> <em>(double <var>lambda</var>, double <var>eta</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the zeroth radial eigenfunction of the Laplacian on the
3-dimensional hyperbolic space,
<em>L^{H3d}_0(\lambda,\eta) := \sin(\lambda\eta)/(\lambda\sinh(\eta))</em>
for <em>\eta &gt;= 0</em>.
In the flat limit this takes the form
<em>L^{H3d}_0(\lambda,\eta) = j_0(\lambda\eta)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fsf_005flegendre_005fH3d_005f1"></a>Function: <em>double</em> <strong>gsl_sf_legendre_H3d_1</strong> <em>(double <var>lambda</var>, double <var>eta</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005flegendre_005fH3d_005f1_005fe"></a>Function: <em>int</em> <strong>gsl_sf_legendre_H3d_1_e</strong> <em>(double <var>lambda</var>, double <var>eta</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the first radial eigenfunction of the Laplacian on
the 3-dimensional hyperbolic space,
<em>L^{H3d}_1(\lambda,\eta) := 1/\sqrt{\lambda^2 + 1} \sin(\lambda \eta)/(\lambda \sinh(\eta)) (\coth(\eta) - \lambda \cot(\lambda\eta))</em>
for <em>\eta &gt;= 0</em>.
In the flat limit this takes the form 
<em>L^{H3d}_1(\lambda,\eta) = j_1(\lambda\eta)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fsf_005flegendre_005fH3d"></a>Function: <em>double</em> <strong>gsl_sf_legendre_H3d</strong> <em>(int <var>l</var>, double <var>lambda</var>, double <var>eta</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005flegendre_005fH3d_005fe"></a>Function: <em>int</em> <strong>gsl_sf_legendre_H3d_e</strong> <em>(int <var>l</var>, double <var>lambda</var>, double <var>eta</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the <var>l</var>-th radial eigenfunction of the
Laplacian on the 3-dimensional hyperbolic space <em>\eta &gt;= 0</em>, <em>l &gt;= 0</em>. In the flat limit this takes the form
<em>L^{H3d}_l(\lambda,\eta) = j_l(\lambda\eta)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fsf_005flegendre_005fH3d_005farray"></a>Function: <em>int</em> <strong>gsl_sf_legendre_H3d_array</strong> <em>(int <var>lmax</var>, double <var>lambda</var>, double <var>eta</var>, double <var>result_array</var>[])</em></dt>
<dd><p>This function computes an array of radial eigenfunctions
<em>L^{H3d}_l(\lambda, \eta)</em> 
for <em>0 &lt;= l &lt;= lmax</em>.
</p></dd></dl>





</body>
</html>