1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Radix-2 FFT routines for real data</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Radix-2 FFT routines for real data">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Radix-2 FFT routines for real data">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Fast-Fourier-Transforms.html#Fast-Fourier-Transforms" rel="up" title="Fast Fourier Transforms">
<link href="Mixed_002dradix-FFT-routines-for-real-data.html#Mixed_002dradix-FFT-routines-for-real-data" rel="next" title="Mixed-radix FFT routines for real data">
<link href="Overview-of-real-data-FFTs.html#Overview-of-real-data-FFTs" rel="previous" title="Overview of real data FFTs">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Radix_002d2-FFT-routines-for-real-data"></a>
<div class="header">
<p>
Next: <a href="Mixed_002dradix-FFT-routines-for-real-data.html#Mixed_002dradix-FFT-routines-for-real-data" accesskey="n" rel="next">Mixed-radix FFT routines for real data</a>, Previous: <a href="Overview-of-real-data-FFTs.html#Overview-of-real-data-FFTs" accesskey="p" rel="previous">Overview of real data FFTs</a>, Up: <a href="Fast-Fourier-Transforms.html#Fast-Fourier-Transforms" accesskey="u" rel="up">Fast Fourier Transforms</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Radix_002d2-FFT-routines-for-real-data-1"></a>
<h3 class="section">16.6 Radix-2 FFT routines for real data</h3>
<a name="index-FFT-of-real-data_002c-radix_002d2-algorithm"></a>
<a name="index-Radix_002d2-FFT-for-real-data"></a>
<p>This section describes radix-2 FFT algorithms for real data. They use
the Cooley-Tukey algorithm to compute in-place FFTs for lengths which
are a power of 2.
</p>
<p>The radix-2 FFT functions for real data are declared in the header files
<samp>gsl_fft_real.h</samp>
</p>
<dl>
<dt><a name="index-gsl_005ffft_005freal_005fradix2_005ftransform"></a>Function: <em>int</em> <strong>gsl_fft_real_radix2_transform</strong> <em>(double <var>data</var>[], size_t <var>stride</var>, size_t <var>n</var>)</em></dt>
<dd>
<p>This function computes an in-place radix-2 FFT of length <var>n</var> and
stride <var>stride</var> on the real array <var>data</var>. The output is a
half-complex sequence, which is stored in-place. The arrangement of the
half-complex terms uses the following scheme: for <em>k < n/2</em> the
real part of the <em>k</em>-th term is stored in location <em>k</em>, and
the corresponding imaginary part is stored in location <em>n-k</em>. Terms
with <em>k > n/2</em> can be reconstructed using the symmetry
<em>z_k = z^*_{n-k}</em>.
The terms for <em>k=0</em> and <em>k=n/2</em> are both purely
real, and count as a special case. Their real parts are stored in
locations <em>0</em> and <em>n/2</em> respectively, while their imaginary
parts which are zero are not stored.
</p>
<p>The following table shows the correspondence between the output
<var>data</var> and the equivalent results obtained by considering the input
data as a complex sequence with zero imaginary part (assuming <var>stride=1</var>),
</p>
<div class="example">
<pre class="example">complex[0].real = data[0]
complex[0].imag = 0
complex[1].real = data[1]
complex[1].imag = data[n-1]
............... ................
complex[k].real = data[k]
complex[k].imag = data[n-k]
............... ................
complex[n/2].real = data[n/2]
complex[n/2].imag = 0
............... ................
complex[k'].real = data[k] k' = n - k
complex[k'].imag = -data[n-k]
............... ................
complex[n-1].real = data[1]
complex[n-1].imag = -data[n-1]
</pre></div>
<p>Note that the output data can be converted into the full complex
sequence using the function <code>gsl_fft_halfcomplex_radix2_unpack</code>
described below.
</p>
</dd></dl>
<p>The radix-2 FFT functions for halfcomplex data are declared in the
header file <samp>gsl_fft_halfcomplex.h</samp>.
</p>
<dl>
<dt><a name="index-gsl_005ffft_005fhalfcomplex_005fradix2_005finverse"></a>Function: <em>int</em> <strong>gsl_fft_halfcomplex_radix2_inverse</strong> <em>(double <var>data</var>[], size_t <var>stride</var>, size_t <var>n</var>)</em></dt>
<dt><a name="index-gsl_005ffft_005fhalfcomplex_005fradix2_005fbackward"></a>Function: <em>int</em> <strong>gsl_fft_halfcomplex_radix2_backward</strong> <em>(double <var>data</var>[], size_t <var>stride</var>, size_t <var>n</var>)</em></dt>
<dd>
<p>These functions compute the inverse or backwards in-place radix-2 FFT of
length <var>n</var> and stride <var>stride</var> on the half-complex sequence
<var>data</var> stored according the output scheme used by
<code>gsl_fft_real_radix2</code>. The result is a real array stored in natural
order.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005ffft_005fhalfcomplex_005fradix2_005funpack"></a>Function: <em>int</em> <strong>gsl_fft_halfcomplex_radix2_unpack</strong> <em>(const double <var>halfcomplex_coefficient</var>[], gsl_complex_packed_array <var>complex_coefficient</var>, size_t <var>stride</var>, size_t <var>n</var>)</em></dt>
<dd><p>This function converts <var>halfcomplex_coefficient</var>, an array of
half-complex coefficients as returned by <code>gsl_fft_real_radix2_transform</code>, into an ordinary complex array, <var>complex_coefficient</var>. It fills in the
complex array using the symmetry
<em>z_k = z_{n-k}^*</em>
to reconstruct the redundant elements. The algorithm for the conversion
is,
</p>
<div class="example">
<pre class="example">complex_coefficient[0].real
= halfcomplex_coefficient[0];
complex_coefficient[0].imag
= 0.0;
for (i = 1; i < n - i; i++)
{
double hc_real
= halfcomplex_coefficient[i*stride];
double hc_imag
= halfcomplex_coefficient[(n-i)*stride];
complex_coefficient[i*stride].real = hc_real;
complex_coefficient[i*stride].imag = hc_imag;
complex_coefficient[(n - i)*stride].real = hc_real;
complex_coefficient[(n - i)*stride].imag = -hc_imag;
}
if (i == n - i)
{
complex_coefficient[i*stride].real
= halfcomplex_coefficient[(n - 1)*stride];
complex_coefficient[i*stride].imag
= 0.0;
}
</pre></div>
</dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Mixed_002dradix-FFT-routines-for-real-data.html#Mixed_002dradix-FFT-routines-for-real-data" accesskey="n" rel="next">Mixed-radix FFT routines for real data</a>, Previous: <a href="Overview-of-real-data-FFTs.html#Overview-of-real-data-FFTs" accesskey="p" rel="previous">Overview of real data FFTs</a>, Up: <a href="Fast-Fourier-Transforms.html#Fast-Fourier-Transforms" accesskey="u" rel="up">Fast Fourier Transforms</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|