1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Random Number Distribution References and Further Reading</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Random Number Distribution References and Further Reading">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Random Number Distribution References and Further Reading">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Random-Number-Distributions.html#Random-Number-Distributions" rel="up" title="Random Number Distributions">
<link href="Statistics.html#Statistics" rel="next" title="Statistics">
<link href="Random-Number-Distribution-Examples.html#Random-Number-Distribution-Examples" rel="previous" title="Random Number Distribution Examples">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Random-Number-Distribution-References-and-Further-Reading"></a>
<div class="header">
<p>
Previous: <a href="Random-Number-Distribution-Examples.html#Random-Number-Distribution-Examples" accesskey="p" rel="previous">Random Number Distribution Examples</a>, Up: <a href="Random-Number-Distributions.html#Random-Number-Distributions" accesskey="u" rel="up">Random Number Distributions</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="References-and-Further-Reading-13"></a>
<h3 class="section">20.41 References and Further Reading</h3>
<p>For an encyclopaedic coverage of the subject readers are advised to
consult the book <cite>Non-Uniform Random Variate Generation</cite> by Luc
Devroye. It covers every imaginable distribution and provides hundreds
of algorithms.
</p>
<ul class="no-bullet">
<li><!-- /@w --> Luc Devroye, <cite>Non-Uniform Random Variate Generation</cite>,
Springer-Verlag, ISBN 0-387-96305-7. Available online at
<a href="http://cg.scs.carleton.ca/~luc/rnbookindex.html">http://cg.scs.carleton.ca/~luc/rnbookindex.html</a>.
</li></ul>
<p>The subject of random variate generation is also reviewed by Knuth, who
describes algorithms for all the major distributions.
</p>
<ul class="no-bullet">
<li><!-- /@w --> Donald E. Knuth, <cite>The Art of Computer Programming: Seminumerical
Algorithms</cite> (Vol 2, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896842.
</li></ul>
<p>The Particle Data Group provides a short review of techniques for
generating distributions of random numbers in the “Monte Carlo”
section of its Annual Review of Particle Physics.
</p>
<ul class="no-bullet">
<li><!-- /@w --> <cite>Review of Particle Properties</cite>
R.M. Barnett et al., Physical Review D54, 1 (1996)
<a href="http://pdg.lbl.gov/">http://pdg.lbl.gov/</a>.
</li></ul>
<p>The Review of Particle Physics is available online in postscript and pdf
format.
</p>
<p>An overview of methods used to compute cumulative distribution functions
can be found in <cite>Statistical Computing</cite> by W.J. Kennedy and
J.E. Gentle. Another general reference is <cite>Elements of Statistical
Computing</cite> by R.A. Thisted.
</p>
<ul class="no-bullet">
<li><!-- /@w --> William E. Kennedy and James E. Gentle, <cite>Statistical Computing</cite> (1980),
Marcel Dekker, ISBN 0-8247-6898-1.
</li></ul>
<ul class="no-bullet">
<li><!-- /@w --> Ronald A. Thisted, <cite>Elements of Statistical Computing</cite> (1988),
Chapman & Hall, ISBN 0-412-01371-1.
</li></ul>
<p>The cumulative distribution functions for the Gaussian distribution
are based on the following papers,
</p>
<ul class="no-bullet">
<li><!-- /@w --> <cite>Rational Chebyshev Approximations Using Linear Equations</cite>,
W.J. Cody, W. Fraser, J.F. Hart. Numerische Mathematik 12, 242–251 (1968).
</li></ul>
<ul class="no-bullet">
<li><!-- /@w --> <cite>Rational Chebyshev Approximations for the Error Function</cite>,
W.J. Cody. Mathematics of Computation 23, n107, 631–637 (July 1969).
</li></ul>
<hr>
<div class="header">
<p>
Previous: <a href="Random-Number-Distribution-Examples.html#Random-Number-Distribution-Examples" accesskey="p" rel="previous">Random Number Distribution Examples</a>, Up: <a href="Random-Number-Distributions.html#Random-Number-Distributions" accesskey="u" rel="up">Random Number Distributions</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|