1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Real Generalized Nonsymmetric Eigensystems</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Real Generalized Nonsymmetric Eigensystems">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Real Generalized Nonsymmetric Eigensystems">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Eigensystems.html#Eigensystems" rel="up" title="Eigensystems">
<link href="Sorting-Eigenvalues-and-Eigenvectors.html#Sorting-Eigenvalues-and-Eigenvectors" rel="next" title="Sorting Eigenvalues and Eigenvectors">
<link href="Complex-Generalized-Hermitian_002dDefinite-Eigensystems.html#Complex-Generalized-Hermitian_002dDefinite-Eigensystems" rel="previous" title="Complex Generalized Hermitian-Definite Eigensystems">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Real-Generalized-Nonsymmetric-Eigensystems"></a>
<div class="header">
<p>
Next: <a href="Sorting-Eigenvalues-and-Eigenvectors.html#Sorting-Eigenvalues-and-Eigenvectors" accesskey="n" rel="next">Sorting Eigenvalues and Eigenvectors</a>, Previous: <a href="Complex-Generalized-Hermitian_002dDefinite-Eigensystems.html#Complex-Generalized-Hermitian_002dDefinite-Eigensystems" accesskey="p" rel="previous">Complex Generalized Hermitian-Definite Eigensystems</a>, Up: <a href="Eigensystems.html#Eigensystems" accesskey="u" rel="up">Eigensystems</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Real-Generalized-Nonsymmetric-Eigensystems-1"></a>
<h3 class="section">15.6 Real Generalized Nonsymmetric Eigensystems</h3>
<a name="index-generalized-eigensystems"></a>
<p>Given two square matrices (<em>A</em>, <em>B</em>), the generalized
nonsymmetric eigenvalue problem is to find eigenvalues <em>\lambda</em> and
eigenvectors <em>x</em> such that
</p><div class="example">
<pre class="example">A x = \lambda B x
</pre></div>
<p>We may also define the problem as finding eigenvalues <em>\mu</em> and
eigenvectors <em>y</em> such that
</p><div class="example">
<pre class="example">\mu A y = B y
</pre></div>
<p>Note that these two problems are equivalent (with <em>\lambda = 1/\mu</em>)
if neither <em>\lambda</em> nor <em>\mu</em> is zero. If say, <em>\lambda</em>
is zero, then it is still a well defined eigenproblem, but its alternate
problem involving <em>\mu</em> is not. Therefore, to allow for zero
(and infinite) eigenvalues, the problem which is actually solved is
</p><div class="example">
<pre class="example">\beta A x = \alpha B x
</pre></div>
<p>The eigensolver routines below will return two values <em>\alpha</em>
and <em>\beta</em> and leave it to the user to perform the divisions
<em>\lambda = \alpha / \beta</em> and <em>\mu = \beta / \alpha</em>.
</p>
<p>If the determinant of the matrix pencil <em>A - \lambda B</em> is zero
for all <em>\lambda</em>, the problem is said to be singular; otherwise
it is called regular. Singularity normally leads to some
<em>\alpha = \beta = 0</em> which means the eigenproblem is ill-conditioned
and generally does not have well defined eigenvalue solutions. The
routines below are intended for regular matrix pencils and could yield
unpredictable results when applied to singular pencils.
</p>
<p>The solution of the real generalized nonsymmetric eigensystem problem for a
matrix pair <em>(A, B)</em> involves computing the generalized Schur
decomposition
</p><div class="example">
<pre class="example">A = Q S Z^T
B = Q T Z^T
</pre></div>
<p>where <em>Q</em> and <em>Z</em> are orthogonal matrices of left and right
Schur vectors respectively, and <em>(S, T)</em> is the generalized Schur
form whose diagonal elements give the <em>\alpha</em> and <em>\beta</em>
values. The algorithm used is the QZ method due to Moler and Stewart
(see references).
</p>
<dl>
<dt><a name="index-gsl_005feigen_005fgen_005falloc"></a>Function: <em>gsl_eigen_gen_workspace *</em> <strong>gsl_eigen_gen_alloc</strong> <em>(const size_t <var>n</var>)</em></dt>
<dd><a name="index-gsl_005feigen_005fgen_005fworkspace"></a>
<p>This function allocates a workspace for computing eigenvalues of
<var>n</var>-by-<var>n</var> real generalized nonsymmetric eigensystems. The
size of the workspace is <em>O(n)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fgen_005ffree"></a>Function: <em>void</em> <strong>gsl_eigen_gen_free</strong> <em>(gsl_eigen_gen_workspace * <var>w</var>)</em></dt>
<dd><p>This function frees the memory associated with the workspace <var>w</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fgen_005fparams"></a>Function: <em>void</em> <strong>gsl_eigen_gen_params</strong> <em>(const int <var>compute_s</var>, const int <var>compute_t</var>, const int <var>balance</var>, gsl_eigen_gen_workspace * <var>w</var>)</em></dt>
<dd><p>This function sets some parameters which determine how the eigenvalue
problem is solved in subsequent calls to <code>gsl_eigen_gen</code>.
</p>
<p>If <var>compute_s</var> is set to 1, the full Schur form <em>S</em> will be
computed by <code>gsl_eigen_gen</code>. If it is set to 0,
<em>S</em> will not be computed (this is the default setting). <em>S</em>
is a quasi upper triangular matrix with 1-by-1 and 2-by-2 blocks
on its diagonal. 1-by-1 blocks correspond to real eigenvalues, and
2-by-2 blocks correspond to complex eigenvalues.
</p>
<p>If <var>compute_t</var> is set to 1, the full Schur form <em>T</em> will be
computed by <code>gsl_eigen_gen</code>. If it is set to 0,
<em>T</em> will not be computed (this is the default setting). <em>T</em>
is an upper triangular matrix with non-negative elements on its diagonal.
Any 2-by-2 blocks in <em>S</em> will correspond to a 2-by-2 diagonal
block in <em>T</em>.
</p>
<p>The <var>balance</var> parameter is currently ignored, since generalized
balancing is not yet implemented.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fgen"></a>Function: <em>int</em> <strong>gsl_eigen_gen</strong> <em>(gsl_matrix * <var>A</var>, gsl_matrix * <var>B</var>, gsl_vector_complex * <var>alpha</var>, gsl_vector * <var>beta</var>, gsl_eigen_gen_workspace * <var>w</var>)</em></dt>
<dd><p>This function computes the eigenvalues of the real generalized nonsymmetric
matrix pair (<var>A</var>, <var>B</var>), and stores them as pairs in
(<var>alpha</var>, <var>beta</var>), where <var>alpha</var> is complex and <var>beta</var> is
real. If <em>\beta_i</em> is non-zero, then
<em>\lambda = \alpha_i / \beta_i</em> is an eigenvalue. Likewise,
if <em>\alpha_i</em> is non-zero, then
<em>\mu = \beta_i / \alpha_i</em> is an eigenvalue of the alternate
problem <em>\mu A y = B y</em>. The elements of <var>beta</var> are normalized
to be non-negative.
</p>
<p>If <em>S</em> is desired, it is stored in <var>A</var> on output. If <em>T</em>
is desired, it is stored in <var>B</var> on output. The ordering of
eigenvalues in (<var>alpha</var>, <var>beta</var>) follows the ordering
of the diagonal blocks in the Schur forms <em>S</em> and <em>T</em>. In rare
cases, this function may fail to find all eigenvalues. If this occurs, an
error code is returned.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fgen_005fQZ"></a>Function: <em>int</em> <strong>gsl_eigen_gen_QZ</strong> <em>(gsl_matrix * <var>A</var>, gsl_matrix * <var>B</var>, gsl_vector_complex * <var>alpha</var>, gsl_vector * <var>beta</var>, gsl_matrix * <var>Q</var>, gsl_matrix * <var>Z</var>, gsl_eigen_gen_workspace * <var>w</var>)</em></dt>
<dd><p>This function is identical to <code>gsl_eigen_gen</code> except that it also
computes the left and right Schur vectors and stores them into <var>Q</var>
and <var>Z</var> respectively.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fgenv_005falloc"></a>Function: <em>gsl_eigen_genv_workspace *</em> <strong>gsl_eigen_genv_alloc</strong> <em>(const size_t <var>n</var>)</em></dt>
<dd><a name="index-gsl_005feigen_005fgenv_005fworkspace"></a>
<p>This function allocates a workspace for computing eigenvalues and
eigenvectors of <var>n</var>-by-<var>n</var> real generalized nonsymmetric
eigensystems. The size of the workspace is <em>O(7n)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fgenv_005ffree"></a>Function: <em>void</em> <strong>gsl_eigen_genv_free</strong> <em>(gsl_eigen_genv_workspace * <var>w</var>)</em></dt>
<dd><p>This function frees the memory associated with the workspace <var>w</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fgenv"></a>Function: <em>int</em> <strong>gsl_eigen_genv</strong> <em>(gsl_matrix * <var>A</var>, gsl_matrix * <var>B</var>, gsl_vector_complex * <var>alpha</var>, gsl_vector * <var>beta</var>, gsl_matrix_complex * <var>evec</var>, gsl_eigen_genv_workspace * <var>w</var>)</em></dt>
<dd><p>This function computes eigenvalues and right eigenvectors of the
<var>n</var>-by-<var>n</var> real generalized nonsymmetric matrix pair
(<var>A</var>, <var>B</var>). The eigenvalues are stored in (<var>alpha</var>, <var>beta</var>)
and the eigenvectors are stored in <var>evec</var>. It first calls
<code>gsl_eigen_gen</code> to compute the eigenvalues, Schur forms, and
Schur vectors. Then it finds eigenvectors of the Schur forms and
backtransforms them using the Schur vectors. The Schur vectors are
destroyed in the process, but can be saved by using
<code>gsl_eigen_genv_QZ</code>. The computed eigenvectors are normalized
to have unit magnitude. On output, (<var>A</var>, <var>B</var>) contains
the generalized Schur form (<em>S</em>, <em>T</em>). If <code>gsl_eigen_gen</code>
fails, no eigenvectors are computed, and an error code is returned.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fgenv_005fQZ"></a>Function: <em>int</em> <strong>gsl_eigen_genv_QZ</strong> <em>(gsl_matrix * <var>A</var>, gsl_matrix * <var>B</var>, gsl_vector_complex * <var>alpha</var>, gsl_vector * <var>beta</var>, gsl_matrix_complex * <var>evec</var>, gsl_matrix * <var>Q</var>, gsl_matrix * <var>Z</var>, gsl_eigen_genv_workspace * <var>w</var>)</em></dt>
<dd><p>This function is identical to <code>gsl_eigen_genv</code> except that it also
computes the left and right Schur vectors and stores them into <var>Q</var>
and <var>Z</var> respectively.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Sorting-Eigenvalues-and-Eigenvectors.html#Sorting-Eigenvalues-and-Eigenvectors" accesskey="n" rel="next">Sorting Eigenvalues and Eigenvectors</a>, Previous: <a href="Complex-Generalized-Hermitian_002dDefinite-Eigensystems.html#Complex-Generalized-Hermitian_002dDefinite-Eigensystems" accesskey="p" rel="previous">Complex Generalized Hermitian-Definite Eigensystems</a>, Up: <a href="Eigensystems.html#Eigensystems" accesskey="u" rel="up">Eigensystems</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|