1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Real Symmetric Matrices</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Real Symmetric Matrices">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Real Symmetric Matrices">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Eigensystems.html#Eigensystems" rel="up" title="Eigensystems">
<link href="Complex-Hermitian-Matrices.html#Complex-Hermitian-Matrices" rel="next" title="Complex Hermitian Matrices">
<link href="Eigensystems.html#Eigensystems" rel="previous" title="Eigensystems">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Real-Symmetric-Matrices"></a>
<div class="header">
<p>
Next: <a href="Complex-Hermitian-Matrices.html#Complex-Hermitian-Matrices" accesskey="n" rel="next">Complex Hermitian Matrices</a>, Up: <a href="Eigensystems.html#Eigensystems" accesskey="u" rel="up">Eigensystems</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Real-Symmetric-Matrices-1"></a>
<h3 class="section">15.1 Real Symmetric Matrices</h3>
<a name="index-symmetric-matrix_002c-real_002c-eigensystem"></a>
<a name="index-real-symmetric-matrix_002c-eigensystem"></a>
<p>For real symmetric matrices, the library uses the symmetric
bidiagonalization and QR reduction method. This is described in Golub
& van Loan, section 8.3. The computed eigenvalues are accurate to an
absolute accuracy of <em>\epsilon ||A||_2</em>, where <em>\epsilon</em> is
the machine precision.
</p>
<dl>
<dt><a name="index-gsl_005feigen_005fsymm_005falloc"></a>Function: <em>gsl_eigen_symm_workspace *</em> <strong>gsl_eigen_symm_alloc</strong> <em>(const size_t <var>n</var>)</em></dt>
<dd><a name="index-gsl_005feigen_005fsymm_005fworkspace"></a>
<p>This function allocates a workspace for computing eigenvalues of
<var>n</var>-by-<var>n</var> real symmetric matrices. The size of the workspace
is <em>O(2n)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fsymm_005ffree"></a>Function: <em>void</em> <strong>gsl_eigen_symm_free</strong> <em>(gsl_eigen_symm_workspace * <var>w</var>)</em></dt>
<dd><p>This function frees the memory associated with the workspace <var>w</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fsymm"></a>Function: <em>int</em> <strong>gsl_eigen_symm</strong> <em>(gsl_matrix * <var>A</var>, gsl_vector * <var>eval</var>, gsl_eigen_symm_workspace * <var>w</var>)</em></dt>
<dd><p>This function computes the eigenvalues of the real symmetric matrix
<var>A</var>. Additional workspace of the appropriate size must be provided
in <var>w</var>. The diagonal and lower triangular part of <var>A</var> are
destroyed during the computation, but the strict upper triangular part
is not referenced. The eigenvalues are stored in the vector <var>eval</var>
and are unordered.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fsymmv_005falloc"></a>Function: <em>gsl_eigen_symmv_workspace *</em> <strong>gsl_eigen_symmv_alloc</strong> <em>(const size_t <var>n</var>)</em></dt>
<dd><a name="index-gsl_005feigen_005fsymmv_005fworkspace"></a>
<p>This function allocates a workspace for computing eigenvalues and
eigenvectors of <var>n</var>-by-<var>n</var> real symmetric matrices. The size of
the workspace is <em>O(4n)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fsymmv_005ffree"></a>Function: <em>void</em> <strong>gsl_eigen_symmv_free</strong> <em>(gsl_eigen_symmv_workspace * <var>w</var>)</em></dt>
<dd><p>This function frees the memory associated with the workspace <var>w</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005feigen_005fsymmv"></a>Function: <em>int</em> <strong>gsl_eigen_symmv</strong> <em>(gsl_matrix * <var>A</var>, gsl_vector * <var>eval</var>, gsl_matrix * <var>evec</var>, gsl_eigen_symmv_workspace * <var>w</var>)</em></dt>
<dd><p>This function computes the eigenvalues and eigenvectors of the real
symmetric matrix <var>A</var>. Additional workspace of the appropriate size
must be provided in <var>w</var>. The diagonal and lower triangular part of
<var>A</var> are destroyed during the computation, but the strict upper
triangular part is not referenced. The eigenvalues are stored in the
vector <var>eval</var> and are unordered. The corresponding eigenvectors are
stored in the columns of the matrix <var>evec</var>. For example, the
eigenvector in the first column corresponds to the first eigenvalue.
The eigenvectors are guaranteed to be mutually orthogonal and normalised
to unit magnitude.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Complex-Hermitian-Matrices.html#Complex-Hermitian-Matrices" accesskey="n" rel="next">Complex Hermitian Matrices</a>, Up: <a href="Eigensystems.html#Eigensystems" accesskey="u" rel="up">Eigensystems</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|