## File: Relative-Exponential-Functions.html

package info (click to toggle)
gsl-ref-html 2.3-1
• area: non-free
• in suites: bullseye, buster, sid
• size: 6,876 kB
• ctags: 4,574
• sloc: makefile: 35
 file content (118 lines) | stat: -rw-r--r-- 6,281 bytes parent folder | download
 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118  GNU Scientific Library – Reference Manual: Relative Exponential Functions

7.16.2 Relative Exponential Functions

Function: double gsl_sf_expm1 (double x)
Function: int gsl_sf_expm1_e (double x, gsl_sf_result * result)

These routines compute the quantity \exp(x)-1 using an algorithm that is accurate for small x.

Function: double gsl_sf_exprel (double x)
Function: int gsl_sf_exprel_e (double x, gsl_sf_result * result)

These routines compute the quantity (\exp(x)-1)/x using an algorithm that is accurate for small x. For small x the algorithm is based on the expansion (\exp(x)-1)/x = 1 + x/2 + x^2/(2*3) + x^3/(2*3*4) + \dots.

Function: double gsl_sf_exprel_2 (double x)
Function: int gsl_sf_exprel_2_e (double x, gsl_sf_result * result)

These routines compute the quantity 2(\exp(x)-1-x)/x^2 using an algorithm that is accurate for small x. For small x the algorithm is based on the expansion 2(\exp(x)-1-x)/x^2 = 1 + x/3 + x^2/(3*4) + x^3/(3*4*5) + \dots.

Function: double gsl_sf_exprel_n (int n, double x)
Function: int gsl_sf_exprel_n_e (int n, double x, gsl_sf_result * result)

These routines compute the N-relative exponential, which is the n-th generalization of the functions gsl_sf_exprel and gsl_sf_exprel_2. The N-relative exponential is given by,

exprel_N(x) = N!/x^N (\exp(x) - \sum_{k=0}^{N-1} x^k/k!)             = 1 + x/(N+1) + x^2/((N+1)(N+2)) + ...             = 1F1 (1,1+N,x)