1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Representation of floating point numbers</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Representation of floating point numbers">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Representation of floating point numbers">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="IEEE-floating_002dpoint-arithmetic.html#IEEE-floating_002dpoint-arithmetic" rel="up" title="IEEE floating-point arithmetic">
<link href="Setting-up-your-IEEE-environment.html#Setting-up-your-IEEE-environment" rel="next" title="Setting up your IEEE environment">
<link href="IEEE-floating_002dpoint-arithmetic.html#IEEE-floating_002dpoint-arithmetic" rel="previous" title="IEEE floating-point arithmetic">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Representation-of-floating-point-numbers"></a>
<div class="header">
<p>
Next: <a href="Setting-up-your-IEEE-environment.html#Setting-up-your-IEEE-environment" accesskey="n" rel="next">Setting up your IEEE environment</a>, Up: <a href="IEEE-floating_002dpoint-arithmetic.html#IEEE-floating_002dpoint-arithmetic" accesskey="u" rel="up">IEEE floating-point arithmetic</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Representation-of-floating-point-numbers-1"></a>
<h3 class="section">45.1 Representation of floating point numbers</h3>
<a name="index-IEEE-format-for-floating-point-numbers"></a>
<a name="index-bias_002c-IEEE-format"></a>
<a name="index-exponent_002c-IEEE-format"></a>
<a name="index-sign-bit_002c-IEEE-format"></a>
<a name="index-mantissa_002c-IEEE-format"></a>
<p>The IEEE Standard for Binary Floating-Point Arithmetic defines binary
formats for single and double precision numbers. Each number is composed
of three parts: a <em>sign bit</em> (<em>s</em>), an <em>exponent</em>
(<em>E</em>) and a <em>fraction</em> (<em>f</em>). The numerical value of the
combination <em>(s,E,f)</em> is given by the following formula,
</p>
<div class="example">
<pre class="example">(-1)^s (1.fffff...) 2^E
</pre></div>
<a name="index-normalized-form_002c-IEEE-format"></a>
<a name="index-denormalized-form_002c-IEEE-format"></a>
<p>The sign bit is either zero or one. The exponent ranges from a minimum value
<em>E_min</em>
to a maximum value
<em>E_max</em> depending on the precision. The exponent is converted to an
unsigned number
<em>e</em>, known as the <em>biased exponent</em>, for storage by adding a
<em>bias</em> parameter,
<em>e = E + bias</em>.
The sequence <em>fffff...</em> represents the digits of the binary
fraction <em>f</em>. The binary digits are stored in <em>normalized
form</em>, by adjusting the exponent to give a leading digit of <em>1</em>.
Since the leading digit is always 1 for normalized numbers it is
assumed implicitly and does not have to be stored.
Numbers smaller than
<em>2^(E_min)</em>
are be stored in <em>denormalized form</em> with a leading zero,
</p>
<div class="example">
<pre class="example">(-1)^s (0.fffff...) 2^(E_min)
</pre></div>
<a name="index-zero_002c-IEEE-format"></a>
<a name="index-infinity_002c-IEEE-format"></a>
<p>This allows gradual underflow down to
<em>2^(E_min - p)</em> for <em>p</em> bits of precision.
A zero is encoded with the special exponent of
<em>2^(E_min - 1)</em> and infinities with the exponent of
<em>2^(E_max + 1)</em>.
</p>
<a name="index-single-precision_002c-IEEE-format"></a>
<p>The format for single precision numbers uses 32 bits divided in the
following way,
</p>
<div class="smallexample">
<pre class="smallexample">seeeeeeeefffffffffffffffffffffff
s = sign bit, 1 bit
e = exponent, 8 bits (E_min=-126, E_max=127, bias=127)
f = fraction, 23 bits
</pre></div>
<a name="index-double-precision_002c-IEEE-format"></a>
<p>The format for double precision numbers uses 64 bits divided in the
following way,
</p>
<div class="smallexample">
<pre class="smallexample">seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff
s = sign bit, 1 bit
e = exponent, 11 bits (E_min=-1022, E_max=1023, bias=1023)
f = fraction, 52 bits
</pre></div>
<p>It is often useful to be able to investigate the behavior of a
calculation at the bit-level and the library provides functions for
printing the IEEE representations in a human-readable form.
</p>
<dl>
<dt><a name="index-gsl_005fieee_005ffprintf_005ffloat"></a>Function: <em>void</em> <strong>gsl_ieee_fprintf_float</strong> <em>(FILE * <var>stream</var>, const float * <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fieee_005ffprintf_005fdouble"></a>Function: <em>void</em> <strong>gsl_ieee_fprintf_double</strong> <em>(FILE * <var>stream</var>, const double * <var>x</var>)</em></dt>
<dd><p>These functions output a formatted version of the IEEE floating-point
number pointed to by <var>x</var> to the stream <var>stream</var>. A pointer is
used to pass the number indirectly, to avoid any undesired promotion
from <code>float</code> to <code>double</code>. The output takes one of the
following forms,
</p>
<dl compact="compact">
<dt><code>NaN</code></dt>
<dd><p>the Not-a-Number symbol
</p>
</dd>
<dt><code>Inf, -Inf</code></dt>
<dd><p>positive or negative infinity
</p>
</dd>
<dt><code>1.fffff...*2^E, -1.fffff...*2^E</code></dt>
<dd><p>a normalized floating point number
</p>
</dd>
<dt><code>0.fffff...*2^E, -0.fffff...*2^E</code></dt>
<dd><p>a denormalized floating point number
</p>
</dd>
<dt><code>0, -0</code></dt>
<dd><p>positive or negative zero
</p>
</dd>
</dl>
<p>The output can be used directly in GNU Emacs Calc mode by preceding it
with <code>2#</code> to indicate binary.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fieee_005fprintf_005ffloat"></a>Function: <em>void</em> <strong>gsl_ieee_printf_float</strong> <em>(const float * <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fieee_005fprintf_005fdouble"></a>Function: <em>void</em> <strong>gsl_ieee_printf_double</strong> <em>(const double * <var>x</var>)</em></dt>
<dd><p>These functions output a formatted version of the IEEE floating-point
number pointed to by <var>x</var> to the stream <code>stdout</code>.
</p></dd></dl>
<p>The following program demonstrates the use of the functions by printing
the single and double precision representations of the fraction
<em>1/3</em>. For comparison the representation of the value promoted from
single to double precision is also printed.
</p>
<div class="example">
<pre class="verbatim">#include <stdio.h>
#include <gsl/gsl_ieee_utils.h>
int
main (void)
{
float f = 1.0/3.0;
double d = 1.0/3.0;
double fd = f; /* promote from float to double */
printf (" f="); gsl_ieee_printf_float(&f);
printf ("\n");
printf ("fd="); gsl_ieee_printf_double(&fd);
printf ("\n");
printf (" d="); gsl_ieee_printf_double(&d);
printf ("\n");
return 0;
}
</pre></div>
<p>The binary representation of <em>1/3</em> is <em>0.01010101... </em>. The
output below shows that the IEEE format normalizes this fraction to give
a leading digit of 1,
</p>
<div class="smallexample">
<pre class="smallexample"> f= 1.01010101010101010101011*2^-2
fd= 1.0101010101010101010101100000000000000000000000000000*2^-2
d= 1.0101010101010101010101010101010101010101010101010101*2^-2
</pre></div>
<p>The output also shows that a single-precision number is promoted to
double-precision by adding zeros in the binary representation.
</p>
<hr>
<div class="header">
<p>
Next: <a href="Setting-up-your-IEEE-environment.html#Setting-up-your-IEEE-environment" accesskey="n" rel="next">Setting up your IEEE environment</a>, Up: <a href="IEEE-floating_002dpoint-arithmetic.html#IEEE-floating_002dpoint-arithmetic" accesskey="u" rel="up">IEEE floating-point arithmetic</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|