1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: The Gaussian Distribution</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: The Gaussian Distribution">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: The Gaussian Distribution">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Random-Number-Distributions.html#Random-Number-Distributions" rel="up" title="Random Number Distributions">
<link href="The-Gaussian-Tail-Distribution.html#The-Gaussian-Tail-Distribution" rel="next" title="The Gaussian Tail Distribution">
<link href="Random-Number-Distribution-Introduction.html#Random-Number-Distribution-Introduction" rel="previous" title="Random Number Distribution Introduction">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="The-Gaussian-Distribution"></a>
<div class="header">
<p>
Next: <a href="The-Gaussian-Tail-Distribution.html#The-Gaussian-Tail-Distribution" accesskey="n" rel="next">The Gaussian Tail Distribution</a>, Previous: <a href="Random-Number-Distribution-Introduction.html#Random-Number-Distribution-Introduction" accesskey="p" rel="previous">Random Number Distribution Introduction</a>, Up: <a href="Random-Number-Distributions.html#Random-Number-Distributions" accesskey="u" rel="up">Random Number Distributions</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="The-Gaussian-Distribution-1"></a>
<h3 class="section">20.2 The Gaussian Distribution</h3>
<dl>
<dt><a name="index-gsl_005fran_005fgaussian"></a>Function: <em>double</em> <strong>gsl_ran_gaussian</strong> <em>(const gsl_rng * <var>r</var>, double <var>sigma</var>)</em></dt>
<dd><a name="index-Gaussian-distribution"></a>
<p>This function returns a Gaussian random variate, with mean zero and
standard deviation <var>sigma</var>. The probability distribution for
Gaussian random variates is,
</p>
<div class="example">
<pre class="example">p(x) dx = {1 \over \sqrt{2 \pi \sigma^2}} \exp (-x^2 / 2\sigma^2) dx
</pre></div>
<p>for <em>x</em> in the range <em>-\infty</em> to <em>+\infty</em>. Use the
transformation <em>z = \mu + x</em> on the numbers returned by
<code>gsl_ran_gaussian</code> to obtain a Gaussian distribution with mean
<em>\mu</em>. This function uses the Box-Muller algorithm which requires two
calls to the random number generator <var>r</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fran_005fgaussian_005fpdf"></a>Function: <em>double</em> <strong>gsl_ran_gaussian_pdf</strong> <em>(double <var>x</var>, double <var>sigma</var>)</em></dt>
<dd><p>This function computes the probability density <em>p(x)</em> at <var>x</var>
for a Gaussian distribution with standard deviation <var>sigma</var>, using
the formula given above.
</p></dd></dl>
<br>
<dl>
<dt><a name="index-gsl_005fran_005fgaussian_005fziggurat"></a>Function: <em>double</em> <strong>gsl_ran_gaussian_ziggurat</strong> <em>(const gsl_rng * <var>r</var>, double <var>sigma</var>)</em></dt>
<dt><a name="index-gsl_005fran_005fgaussian_005fratio_005fmethod"></a>Function: <em>double</em> <strong>gsl_ran_gaussian_ratio_method</strong> <em>(const gsl_rng * <var>r</var>, double <var>sigma</var>)</em></dt>
<dd><a name="index-Ziggurat-method"></a>
<p>This function computes a Gaussian random variate using the alternative
Marsaglia-Tsang ziggurat and Kinderman-Monahan-Leva ratio methods. The
Ziggurat algorithm is the fastest available algorithm in most cases.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fran_005fugaussian"></a>Function: <em>double</em> <strong>gsl_ran_ugaussian</strong> <em>(const gsl_rng * <var>r</var>)</em></dt>
<dt><a name="index-gsl_005fran_005fugaussian_005fpdf"></a>Function: <em>double</em> <strong>gsl_ran_ugaussian_pdf</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fran_005fugaussian_005fratio_005fmethod"></a>Function: <em>double</em> <strong>gsl_ran_ugaussian_ratio_method</strong> <em>(const gsl_rng * <var>r</var>)</em></dt>
<dd><p>These functions compute results for the unit Gaussian distribution. They
are equivalent to the functions above with a standard deviation of one,
<var>sigma</var> = 1.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcdf_005fgaussian_005fP"></a>Function: <em>double</em> <strong>gsl_cdf_gaussian_P</strong> <em>(double <var>x</var>, double <var>sigma</var>)</em></dt>
<dt><a name="index-gsl_005fcdf_005fgaussian_005fQ"></a>Function: <em>double</em> <strong>gsl_cdf_gaussian_Q</strong> <em>(double <var>x</var>, double <var>sigma</var>)</em></dt>
<dt><a name="index-gsl_005fcdf_005fgaussian_005fPinv"></a>Function: <em>double</em> <strong>gsl_cdf_gaussian_Pinv</strong> <em>(double <var>P</var>, double <var>sigma</var>)</em></dt>
<dt><a name="index-gsl_005fcdf_005fgaussian_005fQinv"></a>Function: <em>double</em> <strong>gsl_cdf_gaussian_Qinv</strong> <em>(double <var>Q</var>, double <var>sigma</var>)</em></dt>
<dd><p>These functions compute the cumulative distribution functions
<em>P(x)</em>, <em>Q(x)</em> and their inverses for the Gaussian
distribution with standard deviation <var>sigma</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcdf_005fugaussian_005fP"></a>Function: <em>double</em> <strong>gsl_cdf_ugaussian_P</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fcdf_005fugaussian_005fQ"></a>Function: <em>double</em> <strong>gsl_cdf_ugaussian_Q</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fcdf_005fugaussian_005fPinv"></a>Function: <em>double</em> <strong>gsl_cdf_ugaussian_Pinv</strong> <em>(double <var>P</var>)</em></dt>
<dt><a name="index-gsl_005fcdf_005fugaussian_005fQinv"></a>Function: <em>double</em> <strong>gsl_cdf_ugaussian_Qinv</strong> <em>(double <var>Q</var>)</em></dt>
<dd><p>These functions compute the cumulative distribution functions
<em>P(x)</em>, <em>Q(x)</em> and their inverses for the unit Gaussian
distribution.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="The-Gaussian-Tail-Distribution.html#The-Gaussian-Tail-Distribution" accesskey="n" rel="next">The Gaussian Tail Distribution</a>, Previous: <a href="Random-Number-Distribution-Introduction.html#Random-Number-Distribution-Introduction" accesskey="p" rel="previous">Random Number Distribution Introduction</a>, Up: <a href="Random-Number-Distributions.html#Random-Number-Distributions" accesskey="u" rel="up">Random Number Distributions</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|