## File: The-Levy-alpha_002dStable-Distributions.html

package info (click to toggle)
gsl-ref-html 2.3-1
• links: PTS
• area: non-free
• in suites: bullseye, buster, sid
• size: 6,876 kB
• ctags: 4,574
• sloc: makefile: 35
 file content (98 lines) | stat: -rw-r--r-- 5,000 bytes parent folder | download
 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798  GNU Scientific Library – Reference Manual: The Levy alpha-Stable Distributions

20.13 The Levy alpha-Stable Distributions

Function: double gsl_ran_levy (const gsl_rng * r, double c, double alpha)

This function returns a random variate from the Levy symmetric stable distribution with scale c and exponent alpha. The symmetric stable probability distribution is defined by a Fourier transform,

p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^alpha)

There is no explicit solution for the form of p(x) and the library does not define a corresponding pdf function. For \alpha = 1 the distribution reduces to the Cauchy distribution. For \alpha = 2 it is a Gaussian distribution with \sigma = \sqrt{2} c. For \alpha < 1 the tails of the distribution become extremely wide.

The algorithm only works for 0 < alpha <= 2.