## File: The-Levy-skew-alpha_002dStable-Distribution.html

package info (click to toggle)
gsl-ref-html 2.3-1
• area: non-free
• in suites: buster
• size: 6,876 kB
• ctags: 4,574
• sloc: makefile: 35
 file content (112 lines) | stat: -rw-r--r-- 5,680 bytes parent folder | download
 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112  GNU Scientific Library – Reference Manual: The Levy skew alpha-Stable Distribution

20.14 The Levy skew alpha-Stable Distribution

Function: double gsl_ran_levy_skew (const gsl_rng * r, double c, double alpha, double beta)

This function returns a random variate from the Levy skew stable distribution with scale c, exponent alpha and skewness parameter beta. The skewness parameter must lie in the range [-1,1]. The Levy skew stable probability distribution is defined by a Fourier transform,

p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^alpha (1-i beta sign(t) tan(pi alpha/2)))

When \alpha = 1 the term \tan(\pi \alpha/2) is replaced by -(2/\pi)\log|t|. There is no explicit solution for the form of p(x) and the library does not define a corresponding pdf function. For \alpha = 2 the distribution reduces to a Gaussian distribution with \sigma = \sqrt{2} c and the skewness parameter has no effect. For \alpha < 1 the tails of the distribution become extremely wide. The symmetric distribution corresponds to \beta = 0.

The algorithm only works for 0 < alpha <= 2.

The Levy alpha-stable distributions have the property that if N alpha-stable variates are drawn from the distribution p(c, \alpha, \beta) then the sum Y = X_1 + X_2 + \dots + X_N will also be distributed as an alpha-stable variate, p(N^(1/\alpha) c, \alpha, \beta).