1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  
     | 
    
      <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: The Multivariate Gaussian Distribution</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: The Multivariate Gaussian Distribution">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: The Multivariate Gaussian Distribution">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Random-Number-Distributions.html#Random-Number-Distributions" rel="up" title="Random Number Distributions">
<link href="The-Exponential-Distribution.html#The-Exponential-Distribution" rel="next" title="The Exponential Distribution">
<link href="The-Bivariate-Gaussian-Distribution.html#The-Bivariate-Gaussian-Distribution" rel="previous" title="The Bivariate Gaussian Distribution">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="The-Multivariate-Gaussian-Distribution"></a>
<div class="header">
<p>
Next: <a href="The-Exponential-Distribution.html#The-Exponential-Distribution" accesskey="n" rel="next">The Exponential Distribution</a>, Previous: <a href="The-Bivariate-Gaussian-Distribution.html#The-Bivariate-Gaussian-Distribution" accesskey="p" rel="previous">The Bivariate Gaussian Distribution</a>, Up: <a href="Random-Number-Distributions.html#Random-Number-Distributions" accesskey="u" rel="up">Random Number Distributions</a>   [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="The-Multivariate-Gaussian-Distribution-1"></a>
<h3 class="section">20.5 The Multivariate Gaussian Distribution</h3>
<dl>
<dt><a name="index-gsl_005fran_005fmultivariate_005fgaussian"></a>Function: <em>int</em> <strong>gsl_ran_multivariate_gaussian</strong> <em>(const gsl_rng * <var>r</var>, const gsl_vector * <var>mu</var>, const gsl_matrix * <var>L</var>, gsl_vector * <var>result</var>)</em></dt>
<dd><a name="index-Bivariate-Gaussian-distribution-1"></a>
<a name="index-two-dimensional-Gaussian-distribution-1"></a>
<a name="index-Gaussian-distribution_002c-bivariate-1"></a>
<p>This function generates a random vector satisfying the <em>k</em>-dimensional multivariate Gaussian
distribution with mean <em>\mu</em> and variance-covariance matrix
<em>\Sigma</em>. On input, the <em>k</em>-vector <em>\mu</em> is given in <var>mu</var>, and
the Cholesky factor of the <em>k</em>-by-<em>k</em> matrix <em>\Sigma = L L^T</em> is
given in the lower triangle of <var>L</var>, as output from <code>gsl_linalg_cholesky_decomp</code>.
The random vector is stored in <var>result</var> on output. The probability distribution
for multivariate Gaussian random variates is
</p>
<div class="example">
<pre class="example">p(x_1,...,x_k) dx_1 ... dx_k = {1 \over \sqrt{(2 \pi)^k |\Sigma|} \exp \left(-{1 \over 2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right) dx_1 \dots dx_k
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-gsl_005fran_005fmultivariate_005fgaussian_005fpdf"></a>Function: <em>int</em> <strong>gsl_ran_multivariate_gaussian_pdf</strong> <em>(const gsl_vector * <var>x</var>, const gsl_vector * <var>mu</var>, const gsl_matrix * <var>L</var>, double * <var>result</var>, gsl_vector * <var>work</var>)</em></dt>
<dt><a name="index-gsl_005fran_005fmultivariate_005fgaussian_005flog_005fpdf"></a>Function: <em>int</em> <strong>gsl_ran_multivariate_gaussian_log_pdf</strong> <em>(const gsl_vector * <var>x</var>, const gsl_vector * <var>mu</var>, const gsl_matrix * <var>L</var>, double * <var>result</var>, gsl_vector * <var>work</var>)</em></dt>
<dd><p>These functions compute <em>p(x)</em> or <em>\log{p(x)}</em> at the point <var>x</var>, using mean vector
<var>mu</var> and variance-covariance matrix specified by its Cholesky factor <var>L</var> using the formula
above. Additional workspace of length <em>k</em> is required in <var>work</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fran_005fmultivariate_005fgaussian_005fmean"></a>Function: <em>int</em> <strong>gsl_ran_multivariate_gaussian_mean</strong> <em>(const gsl_matrix * <var>X</var>, gsl_vector * <var>mu_hat</var>)</em></dt>
<dd><p>Given a set of <em>n</em> samples <em>X_j</em> from a <em>k</em>-dimensional multivariate Gaussian distribution,
this function computes the maximum likelihood estimate of the mean of the distribution, given by
</p>
<div class="example">
<pre class="example">\Hat{\mu} = {1 \over n} \sum_{j=1}^n X_j
</pre></div>
<p>The samples <em>X_1,X_2,\dots,X_n</em> are given in the <em>n</em>-by-<em>k</em> matrix <var>X</var>, and the maximum
likelihood estimate of the mean is stored in <var>mu_hat</var> on output.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fran_005fmultivariate_005fgaussian_005fvcov"></a>Function: <em>int</em> <strong>gsl_ran_multivariate_gaussian_vcov</strong> <em>(const gsl_matrix * <var>X</var>, gsl_matrix * <var>sigma_hat</var>)</em></dt>
<dd><p>Given a set of <em>n</em> samples <em>X_j</em> from a <em>k</em>-dimensional multivariate Gaussian distribution,
this function computes the maximum likelihood estimate of the variance-covariance matrix of the distribution,
given by
</p>
<div class="example">
<pre class="example">\Hat{\Sigma} = {1 \over n} \sum_{j=1}^n \left( X_j - \Hat{\mu} \right) \left( X_j - \Hat{\mu} \right)^T
</pre></div>
<p>The samples <em>X_1,X_2,\dots,X_n</em> are given in the <em>n</em>-by-<em>k</em> matrix <var>X</var> and the maximum
likelihood estimate of the variance-covariance matrix is stored in <var>sigma_hat</var> on output.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="The-Exponential-Distribution.html#The-Exponential-Distribution" accesskey="n" rel="next">The Exponential Distribution</a>, Previous: <a href="The-Bivariate-Gaussian-Distribution.html#The-Bivariate-Gaussian-Distribution" accesskey="p" rel="previous">The Bivariate Gaussian Distribution</a>, Up: <a href="Random-Number-Distributions.html#Random-Number-Distributions" accesskey="u" rel="up">Random Number Distributions</a>   [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
 
     |