1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Tridiagonal Systems</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Tridiagonal Systems">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Tridiagonal Systems">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Linear-Algebra.html#Linear-Algebra" rel="up" title="Linear Algebra">
<link href="Triangular-Systems.html#Triangular-Systems" rel="next" title="Triangular Systems">
<link href="Householder-solver-for-linear-systems.html#Householder-solver-for-linear-systems" rel="previous" title="Householder solver for linear systems">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Tridiagonal-Systems"></a>
<div class="header">
<p>
Next: <a href="Triangular-Systems.html#Triangular-Systems" accesskey="n" rel="next">Triangular Systems</a>, Previous: <a href="Householder-solver-for-linear-systems.html#Householder-solver-for-linear-systems" accesskey="p" rel="previous">Householder solver for linear systems</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Tridiagonal-Systems-1"></a>
<h3 class="section">14.17 Tridiagonal Systems</h3>
<a name="index-tridiagonal-systems"></a>
<p>The functions described in this section efficiently solve symmetric,
non-symmetric and cyclic tridiagonal systems with minimal storage.
Note that the current implementations of these functions use a variant
of Cholesky decomposition, so the tridiagonal matrix must be positive
definite. For non-positive definite matrices, the functions return
the error code <code>GSL_ESING</code>.
</p>
<dl>
<dt><a name="index-gsl_005flinalg_005fsolve_005ftridiag"></a>Function: <em>int</em> <strong>gsl_linalg_solve_tridiag</strong> <em>(const gsl_vector * <var>diag</var>, const gsl_vector * <var>e</var>, const gsl_vector * <var>f</var>, const gsl_vector * <var>b</var>, gsl_vector * <var>x</var>)</em></dt>
<dd><p>This function solves the general <em>N</em>-by-<em>N</em> system <em>A x =
b</em> where <var>A</var> is tridiagonal (<em>N >= 2</em>). The super-diagonal and
sub-diagonal vectors <var>e</var> and <var>f</var> must be one element shorter
than the diagonal vector <var>diag</var>. The form of <var>A</var> for the 4-by-4
case is shown below,
</p>
<div class="example">
<pre class="example">A = ( d_0 e_0 0 0 )
( f_0 d_1 e_1 0 )
( 0 f_1 d_2 e_2 )
( 0 0 f_2 d_3 )
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fsolve_005fsymm_005ftridiag"></a>Function: <em>int</em> <strong>gsl_linalg_solve_symm_tridiag</strong> <em>(const gsl_vector * <var>diag</var>, const gsl_vector * <var>e</var>, const gsl_vector * <var>b</var>, gsl_vector * <var>x</var>)</em></dt>
<dd><p>This function solves the general <em>N</em>-by-<em>N</em> system <em>A x =
b</em> where <var>A</var> is symmetric tridiagonal (<em>N >= 2</em>). The off-diagonal vector
<var>e</var> must be one element shorter than the diagonal vector <var>diag</var>.
The form of <var>A</var> for the 4-by-4 case is shown below,
</p>
<div class="example">
<pre class="example">A = ( d_0 e_0 0 0 )
( e_0 d_1 e_1 0 )
( 0 e_1 d_2 e_2 )
( 0 0 e_2 d_3 )
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fsolve_005fcyc_005ftridiag"></a>Function: <em>int</em> <strong>gsl_linalg_solve_cyc_tridiag</strong> <em>(const gsl_vector * <var>diag</var>, const gsl_vector * <var>e</var>, const gsl_vector * <var>f</var>, const gsl_vector * <var>b</var>, gsl_vector * <var>x</var>)</em></dt>
<dd><p>This function solves the general <em>N</em>-by-<em>N</em> system <em>A x =
b</em> where <var>A</var> is cyclic tridiagonal (<em>N >= 3</em>). The cyclic super-diagonal and
sub-diagonal vectors <var>e</var> and <var>f</var> must have the same number of
elements as the diagonal vector <var>diag</var>. The form of <var>A</var> for the
4-by-4 case is shown below,
</p>
<div class="example">
<pre class="example">A = ( d_0 e_0 0 f_3 )
( f_0 d_1 e_1 0 )
( 0 f_1 d_2 e_2 )
( e_3 0 f_2 d_3 )
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fsolve_005fsymm_005fcyc_005ftridiag"></a>Function: <em>int</em> <strong>gsl_linalg_solve_symm_cyc_tridiag</strong> <em>(const gsl_vector * <var>diag</var>, const gsl_vector * <var>e</var>, const gsl_vector * <var>b</var>, gsl_vector * <var>x</var>)</em></dt>
<dd><p>This function solves the general <em>N</em>-by-<em>N</em> system <em>A x =
b</em> where <var>A</var> is symmetric cyclic tridiagonal (<em>N >= 3</em>). The cyclic
off-diagonal vector <var>e</var> must have the same number of elements as the
diagonal vector <var>diag</var>. The form of <var>A</var> for the 4-by-4 case is
shown below,
</p>
<div class="example">
<pre class="example">A = ( d_0 e_0 0 e_3 )
( e_0 d_1 e_1 0 )
( 0 e_1 d_2 e_2 )
( e_3 0 e_2 d_3 )
</pre></div>
</dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Triangular-Systems.html#Triangular-Systems" accesskey="n" rel="next">Triangular Systems</a>, Previous: <a href="Householder-solver-for-linear-systems.html#Householder-solver-for-linear-systems" accesskey="p" rel="previous">Householder solver for linear systems</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|