File: Vector-views.html

package info (click to toggle)
gsl-ref-html 2.3-1
  • links: PTS
  • area: non-free
  • in suites: bullseye, buster, sid
  • size: 6,876 kB
  • ctags: 4,574
  • sloc: makefile: 35
file content (258 lines) | stat: -rw-r--r-- 13,894 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".

(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: Vector views</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: Vector views">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: Vector views">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Vectors.html#Vectors" rel="up" title="Vectors">
<link href="Copying-vectors.html#Copying-vectors" rel="next" title="Copying vectors">
<link href="Reading-and-writing-vectors.html#Reading-and-writing-vectors" rel="previous" title="Reading and writing vectors">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Vector-views"></a>
<div class="header">
<p>
Next: <a href="Copying-vectors.html#Copying-vectors" accesskey="n" rel="next">Copying vectors</a>, Previous: <a href="Reading-and-writing-vectors.html#Reading-and-writing-vectors" accesskey="p" rel="previous">Reading and writing vectors</a>, Up: <a href="Vectors.html#Vectors" accesskey="u" rel="up">Vectors</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Vector-views-1"></a>
<h4 class="subsection">8.3.5 Vector views</h4>

<p>In addition to creating vectors from slices of blocks it is also
possible to slice vectors and create vector views.  For example, a
subvector of another vector can be described with a view, or two views
can be made which provide access to the even and odd elements of a
vector.
</p>
<a name="index-gsl_005fvector_005fview"></a>
<a name="index-gsl_005fvector_005fconst_005fview"></a>
<p>A vector view is a temporary object, stored on the stack, which can be
used to operate on a subset of vector elements.  Vector views can be
defined for both constant and non-constant vectors, using separate types
that preserve constness.  A vector view has the type
<code>gsl_vector_view</code> and a constant vector view has the type
<code>gsl_vector_const_view</code>.  In both cases the elements of the view
can be accessed as a <code>gsl_vector</code> using the <code>vector</code> component
of the view object.  A pointer to a vector of type <code>gsl_vector *</code>
or <code>const gsl_vector *</code> can be obtained by taking the address of
this component with the <code>&amp;</code> operator.  
</p>
<p>When using this pointer it is important to ensure that the view itself
remains in scope&mdash;the simplest way to do so is by always writing the
pointer as <code>&amp;</code><var>view</var><code>.vector</code>, and never storing this value
in another variable.  
</p>
<dl>
<dt><a name="index-gsl_005fvector_005fsubvector"></a>Function: <em>gsl_vector_view</em> <strong>gsl_vector_subvector</strong> <em>(gsl_vector * <var>v</var>, size_t <var>offset</var>, size_t <var>n</var>)</em></dt>
<dt><a name="index-gsl_005fvector_005fconst_005fsubvector"></a>Function: <em>gsl_vector_const_view</em> <strong>gsl_vector_const_subvector</strong> <em>(const gsl_vector * <var>v</var>, size_t <var>offset</var>, size_t <var>n</var>)</em></dt>
<dd><p>These functions return a vector view of a subvector of another vector
<var>v</var>.  The start of the new vector is offset by <var>offset</var> elements
from the start of the original vector.  The new vector has <var>n</var>
elements.  Mathematically, the <var>i</var>-th element of the new vector
<var>v&rsquo;</var> is given by,
</p>
<div class="example">
<pre class="example">v'(i) = v-&gt;data[(offset + i)*v-&gt;stride]
</pre></div>

<p>where the index <var>i</var> runs from 0 to <code>n-1</code>.
</p>
<p>The <code>data</code> pointer of the returned vector struct is set to null if
the combined parameters (<var>offset</var>,<var>n</var>) overrun the end of the
original vector.
</p>
<p>The new vector is only a view of the block underlying the original
vector, <var>v</var>.  The block containing the elements of <var>v</var> is not
owned by the new vector.  When the view goes out of scope the original
vector <var>v</var> and its block will continue to exist.  The original
memory can only be deallocated by freeing the original vector.  Of
course, the original vector should not be deallocated while the view is
still in use.
</p>
<p>The function <code>gsl_vector_const_subvector</code> is equivalent to
<code>gsl_vector_subvector</code> but can be used for vectors which are
declared <code>const</code>.
</p></dd></dl>


<dl>
<dt><a name="index-gsl_005fvector_005fsubvector_005fwith_005fstride"></a>Function: <em>gsl_vector_view</em> <strong>gsl_vector_subvector_with_stride</strong> <em>(gsl_vector * <var>v</var>, size_t <var>offset</var>, size_t <var>stride</var>, size_t <var>n</var>)</em></dt>
<dt><a name="index-gsl_005fvector_005fconst_005fsubvector_005fwith_005fstride"></a>Function: <em>gsl_vector_const_view</em> <strong>gsl_vector_const_subvector_with_stride</strong> <em>(const gsl_vector * <var>v</var>, size_t <var>offset</var>, size_t <var>stride</var>, size_t <var>n</var>)</em></dt>
<dd><p>These functions return a vector view of a subvector of another vector
<var>v</var> with an additional stride argument. The subvector is formed in
the same way as for <code>gsl_vector_subvector</code> but the new vector has
<var>n</var> elements with a step-size of <var>stride</var> from one element to
the next in the original vector.  Mathematically, the <var>i</var>-th element
of the new vector <var>v&rsquo;</var> is given by,
</p>
<div class="example">
<pre class="example">v'(i) = v-&gt;data[(offset + i*stride)*v-&gt;stride]
</pre></div>

<p>where the index <var>i</var> runs from 0 to <code>n-1</code>.
</p>
<p>Note that subvector views give direct access to the underlying elements
of the original vector. For example, the following code will zero the
even elements of the vector <code>v</code> of length <code>n</code>, while leaving the
odd elements untouched,
</p>
<div class="example">
<pre class="example">gsl_vector_view v_even 
  = gsl_vector_subvector_with_stride (v, 0, 2, n/2);
gsl_vector_set_zero (&amp;v_even.vector);
</pre></div>

<p>A vector view can be passed to any subroutine which takes a vector
argument just as a directly allocated vector would be, using
<code>&amp;</code><var>view</var><code>.vector</code>.  For example, the following code
computes the norm of the odd elements of <code>v</code> using the <small>BLAS</small>
routine <small>DNRM2</small>,
</p>
<div class="example">
<pre class="example">gsl_vector_view v_odd 
  = gsl_vector_subvector_with_stride (v, 1, 2, n/2);
double r = gsl_blas_dnrm2 (&amp;v_odd.vector);
</pre></div>

<p>The function <code>gsl_vector_const_subvector_with_stride</code> is equivalent
to <code>gsl_vector_subvector_with_stride</code> but can be used for vectors
which are declared <code>const</code>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fvector_005fcomplex_005freal"></a>Function: <em>gsl_vector_view</em> <strong>gsl_vector_complex_real</strong> <em>(gsl_vector_complex * <var>v</var>)</em></dt>
<dt><a name="index-gsl_005fvector_005fcomplex_005fconst_005freal"></a>Function: <em>gsl_vector_const_view</em> <strong>gsl_vector_complex_const_real</strong> <em>(const gsl_vector_complex * <var>v</var>)</em></dt>
<dd><p>These functions return a vector view of the real parts of the complex
vector <var>v</var>.
</p>
<p>The function <code>gsl_vector_complex_const_real</code> is equivalent to
<code>gsl_vector_complex_real</code> but can be used for vectors which are
declared <code>const</code>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fvector_005fcomplex_005fimag"></a>Function: <em>gsl_vector_view</em> <strong>gsl_vector_complex_imag</strong> <em>(gsl_vector_complex * <var>v</var>)</em></dt>
<dt><a name="index-gsl_005fvector_005fcomplex_005fconst_005fimag"></a>Function: <em>gsl_vector_const_view</em> <strong>gsl_vector_complex_const_imag</strong> <em>(const gsl_vector_complex * <var>v</var>)</em></dt>
<dd><p>These functions return a vector view of the imaginary parts of the
complex vector <var>v</var>.
</p>
<p>The function <code>gsl_vector_complex_const_imag</code> is equivalent to
<code>gsl_vector_complex_imag</code> but can be used for vectors which are
declared <code>const</code>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fvector_005fview_005farray"></a>Function: <em>gsl_vector_view</em> <strong>gsl_vector_view_array</strong> <em>(double * <var>base</var>, size_t <var>n</var>) </em></dt>
<dt><a name="index-gsl_005fvector_005fconst_005fview_005farray"></a>Function: <em>gsl_vector_const_view</em> <strong>gsl_vector_const_view_array</strong> <em>(const double * <var>base</var>, size_t <var>n</var>)</em></dt>
<dd><p>These functions return a vector view of an array.  The start of the new
vector is given by <var>base</var> and has <var>n</var> elements.  Mathematically,
the <var>i</var>-th element of the new vector <var>v&rsquo;</var> is given by,
</p>
<div class="example">
<pre class="example">v'(i) = base[i]
</pre></div>

<p>where the index <var>i</var> runs from 0 to <code>n-1</code>.
</p>
<p>The array containing the elements of <var>v</var> is not owned by the new
vector view.  When the view goes out of scope the original array will
continue to exist.  The original memory can only be deallocated by
freeing the original pointer <var>base</var>.  Of course, the original array
should not be deallocated while the view is still in use.
</p>
<p>The function <code>gsl_vector_const_view_array</code> is equivalent to
<code>gsl_vector_view_array</code> but can be used for arrays which are
declared <code>const</code>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fvector_005fview_005farray_005fwith_005fstride"></a>Function: <em>gsl_vector_view</em> <strong>gsl_vector_view_array_with_stride</strong> <em>(double * <var>base</var>, size_t <var>stride</var>, size_t <var>n</var>)</em></dt>
<dt><a name="index-gsl_005fvector_005fconst_005fview_005farray_005fwith_005fstride"></a>Function: <em>gsl_vector_const_view</em> <strong>gsl_vector_const_view_array_with_stride</strong> <em>(const double * <var>base</var>, size_t <var>stride</var>, size_t <var>n</var>)</em></dt>
<dd><p>These functions return a vector view of an array <var>base</var> with an
additional stride argument. The subvector is formed in the same way as
for <code>gsl_vector_view_array</code> but the new vector has <var>n</var> elements
with a step-size of <var>stride</var> from one element to the next in the
original array.  Mathematically, the <var>i</var>-th element of the new
vector <var>v&rsquo;</var> is given by,
</p>
<div class="example">
<pre class="example">v'(i) = base[i*stride]
</pre></div>

<p>where the index <var>i</var> runs from 0 to <code>n-1</code>.
</p>
<p>Note that the view gives direct access to the underlying elements of the
original array.  A vector view can be passed to any subroutine which
takes a vector argument just as a directly allocated vector would be,
using <code>&amp;</code><var>view</var><code>.vector</code>.
</p>
<p>The function <code>gsl_vector_const_view_array_with_stride</code> is
equivalent to <code>gsl_vector_view_array_with_stride</code> but can be used
for arrays which are declared <code>const</code>.
</p></dd></dl>




<hr>
<div class="header">
<p>
Next: <a href="Copying-vectors.html#Copying-vectors" accesskey="n" rel="next">Copying vectors</a>, Previous: <a href="Reading-and-writing-vectors.html#Reading-and-writing-vectors" accesskey="p" rel="previous">Reading and writing vectors</a>, Up: <a href="Vectors.html#Vectors" accesskey="u" rel="up">Vectors</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>