1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
|
/* specfunc/dilog.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_clausen.h>
#include <gsl/gsl_sf_trig.h>
#include <gsl/gsl_sf_log.h>
#include <gsl/gsl_sf_dilog.h>
/* Evaluate series for real dilog(x)
* Sum[ x^k / k^2, {k,1,Infinity}]
*
* Converges rapidly for |x| < 1/2.
*/
static
int
dilog_series_1(const double x, gsl_sf_result * result)
{
const int kmax = 1000;
double sum = x;
double term = x;
int k;
for(k=2; k<kmax; k++) {
const double rk = (k-1.0)/k;
term *= x;
term *= rk*rk;
sum += term;
if(fabs(term/sum) < GSL_DBL_EPSILON) break;
}
result->val = sum;
result->err = 2.0 * fabs(term);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
if(k == kmax)
GSL_ERROR ("error", GSL_EMAXITER);
else
return GSL_SUCCESS;
}
/* Compute the associated series
*
* sum_{k=1}{infty} r^k / (k^2 (k+1))
*
* This is a series which appears in the one-step accelerated
* method, which splits out one elementary function from the
* full definition of Li_2(x). See below.
*/
static int
series_2(double r, gsl_sf_result * result)
{
static const int kmax = 100;
double rk = r;
double sum = 0.5 * r;
int k;
for(k=2; k<10; k++)
{
double ds;
rk *= r;
ds = rk/(k*k*(k+1.0));
sum += ds;
}
for(; k<kmax; k++)
{
double ds;
rk *= r;
ds = rk/(k*k*(k+1.0));
sum += ds;
if(fabs(ds/sum) < 0.5*GSL_DBL_EPSILON) break;
}
result->val = sum;
result->err = 2.0 * kmax * GSL_DBL_EPSILON * fabs(sum);
return GSL_SUCCESS;
}
/* Compute Li_2(x) using the accelerated series representation.
*
* Li_2(x) = 1 + (1-x)ln(1-x)/x + series_2(x)
*
* assumes: -1 < x < 1
*/
static int
dilog_series_2(double x, gsl_sf_result * result)
{
const int stat_s3 = series_2(x, result);
double t;
if(x > 0.01)
t = (1.0 - x) * log(1.0-x) / x;
else
{
static const double c3 = 1.0/3.0;
static const double c4 = 1.0/4.0;
static const double c5 = 1.0/5.0;
static const double c6 = 1.0/6.0;
static const double c7 = 1.0/7.0;
static const double c8 = 1.0/8.0;
const double t68 = c6 + x*(c7 + x*c8);
const double t38 = c3 + x *(c4 + x *(c5 + x * t68));
t = (x - 1.0) * (1.0 + x*(0.5 + x*t38));
}
result->val += 1.0 + t;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(t);
return stat_s3;
}
/* Calculates Li_2(x) for real x. Assumes x >= 0.0.
*/
static
int
dilog_xge0(const double x, gsl_sf_result * result)
{
if(x > 2.0) {
gsl_sf_result ser;
const int stat_ser = dilog_series_2(1.0/x, &ser);
const double log_x = log(x);
const double t1 = M_PI*M_PI/3.0;
const double t2 = ser.val;
const double t3 = 0.5*log_x*log_x;
result->val = t1 - t2 - t3;
result->err = GSL_DBL_EPSILON * fabs(log_x) + ser.err;
result->err += GSL_DBL_EPSILON * (fabs(t1) + fabs(t2) + fabs(t3));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return stat_ser;
}
else if(x > 1.01) {
gsl_sf_result ser;
const int stat_ser = dilog_series_2(1.0 - 1.0/x, &ser);
const double log_x = log(x);
const double log_term = log_x * (log(1.0-1.0/x) + 0.5*log_x);
const double t1 = M_PI*M_PI/6.0;
const double t2 = ser.val;
const double t3 = log_term;
result->val = t1 + t2 - t3;
result->err = GSL_DBL_EPSILON * fabs(log_x) + ser.err;
result->err += GSL_DBL_EPSILON * (fabs(t1) + fabs(t2) + fabs(t3));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return stat_ser;
}
else if(x > 1.0) {
/* series around x = 1.0 */
const double eps = x - 1.0;
const double lne = log(eps);
const double c0 = M_PI*M_PI/6.0;
const double c1 = 1.0 - lne;
const double c2 = -(1.0 - 2.0*lne)/4.0;
const double c3 = (1.0 - 3.0*lne)/9.0;
const double c4 = -(1.0 - 4.0*lne)/16.0;
const double c5 = (1.0 - 5.0*lne)/25.0;
const double c6 = -(1.0 - 6.0*lne)/36.0;
const double c7 = (1.0 - 7.0*lne)/49.0;
const double c8 = -(1.0 - 8.0*lne)/64.0;
result->val = c0+eps*(c1+eps*(c2+eps*(c3+eps*(c4+eps*(c5+eps*(c6+eps*(c7+eps*c8)))))));
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else if(x == 1.0) {
result->val = M_PI*M_PI/6.0;
result->err = 2.0 * GSL_DBL_EPSILON * M_PI*M_PI/6.0;
return GSL_SUCCESS;
}
else if(x > 0.5) {
gsl_sf_result ser;
const int stat_ser = dilog_series_2(1.0-x, &ser);
const double log_x = log(x);
const double t1 = M_PI*M_PI/6.0;
const double t2 = ser.val;
const double t3 = log_x*log(1.0-x);
result->val = t1 - t2 - t3;
result->err = GSL_DBL_EPSILON * fabs(log_x) + ser.err;
result->err += GSL_DBL_EPSILON * (fabs(t1) + fabs(t2) + fabs(t3));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return stat_ser;
}
else if(x > 0.25) {
return dilog_series_2(x, result);
}
else if(x > 0.0) {
return dilog_series_1(x, result);
}
else {
/* x == 0.0 */
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
}
/* Evaluate the series representation for Li2(z):
*
* Li2(z) = Sum[ |z|^k / k^2 Exp[i k arg(z)], {k,1,Infinity}]
* |z| = r
* arg(z) = theta
*
* Assumes 0 < r < 1.
* It is used only for small r.
*/
static
int
dilogc_series_1(
const double r,
const double x,
const double y,
gsl_sf_result * real_result,
gsl_sf_result * imag_result
)
{
const double cos_theta = x/r;
const double sin_theta = y/r;
const double alpha = 1.0 - cos_theta;
const double beta = sin_theta;
double ck = cos_theta;
double sk = sin_theta;
double rk = r;
double real_sum = r*ck;
double imag_sum = r*sk;
const int kmax = 50 + (int)(22.0/(-log(r))); /* tuned for double-precision */
int k;
for(k=2; k<kmax; k++) {
double dr, di;
double ck_tmp = ck;
ck = ck - (alpha*ck + beta*sk);
sk = sk - (alpha*sk - beta*ck_tmp);
rk *= r;
dr = rk/((double)k*k) * ck;
di = rk/((double)k*k) * sk;
real_sum += dr;
imag_sum += di;
if(fabs((dr*dr + di*di)/(real_sum*real_sum + imag_sum*imag_sum)) < GSL_DBL_EPSILON*GSL_DBL_EPSILON) break;
}
real_result->val = real_sum;
real_result->err = 2.0 * kmax * GSL_DBL_EPSILON * fabs(real_sum);
imag_result->val = imag_sum;
imag_result->err = 2.0 * kmax * GSL_DBL_EPSILON * fabs(imag_sum);
return GSL_SUCCESS;
}
/* Compute
*
* sum_{k=1}{infty} z^k / (k^2 (k+1))
*
* This is a series which appears in the one-step accelerated
* method, which splits out one elementary function from the
* full definition of Li_2.
*/
static int
series_2_c(
double r,
double x,
double y,
gsl_sf_result * sum_re,
gsl_sf_result * sum_im
)
{
const double cos_theta = x/r;
const double sin_theta = y/r;
const double alpha = 1.0 - cos_theta;
const double beta = sin_theta;
double ck = cos_theta;
double sk = sin_theta;
double rk = r;
double real_sum = 0.5 * r*ck;
double imag_sum = 0.5 * r*sk;
const int kmax = 30 + (int)(18.0/(-log(r))); /* tuned for double-precision */
int k;
for(k=2; k<kmax; k++)
{
double dr, di;
const double ck_tmp = ck;
ck = ck - (alpha*ck + beta*sk);
sk = sk - (alpha*sk - beta*ck_tmp);
rk *= r;
dr = rk/((double)k*k*(k+1.0)) * ck;
di = rk/((double)k*k*(k+1.0)) * sk;
real_sum += dr;
imag_sum += di;
if(fabs((dr*dr + di*di)/(real_sum*real_sum + imag_sum*imag_sum)) < GSL_DBL_EPSILON*GSL_DBL_EPSILON) break;
}
sum_re->val = real_sum;
sum_re->err = 2.0 * kmax * GSL_DBL_EPSILON * fabs(real_sum);
sum_im->val = imag_sum;
sum_im->err = 2.0 * kmax * GSL_DBL_EPSILON * fabs(imag_sum);
return GSL_SUCCESS;
}
/* Compute Li_2(z) using the one-step accelerated series.
*
* Li_2(z) = 1 + (1-z)ln(1-z)/z + series_2_c(z)
*
* z = r exp(i theta)
* assumes: r < 1
* assumes: r > epsilon, so that we take no special care with log(1-z)
*/
static
int
dilogc_series_2(
const double r,
const double x,
const double y,
gsl_sf_result * real_dl,
gsl_sf_result * imag_dl
)
{
if(r == 0.0)
{
real_dl->val = 0.0;
imag_dl->val = 0.0;
real_dl->err = 0.0;
imag_dl->err = 0.0;
return GSL_SUCCESS;
}
else
{
gsl_sf_result sum_re;
gsl_sf_result sum_im;
const int stat_s3 = series_2_c(r, x, y, &sum_re, &sum_im);
/* t = ln(1-z)/z */
gsl_sf_result ln_omz_r;
gsl_sf_result ln_omz_theta;
const int stat_log = gsl_sf_complex_log_e(1.0-x, -y, &ln_omz_r, &ln_omz_theta);
const double t_x = ( ln_omz_r.val * x + ln_omz_theta.val * y)/(r*r);
const double t_y = (-ln_omz_r.val * y + ln_omz_theta.val * x)/(r*r);
/* r = (1-z) ln(1-z)/z */
const double r_x = (1.0 - x) * t_x + y * t_y;
const double r_y = (1.0 - x) * t_y - y * t_x;
real_dl->val = sum_re.val + r_x + 1.0;
imag_dl->val = sum_im.val + r_y;
real_dl->err = sum_re.err + 2.0*GSL_DBL_EPSILON*(fabs(real_dl->val) + fabs(r_x));
imag_dl->err = sum_im.err + 2.0*GSL_DBL_EPSILON*(fabs(imag_dl->val) + fabs(r_y));
return GSL_ERROR_SELECT_2(stat_s3, stat_log);
}
}
/* Evaluate a series for Li_2(z) when |z| is near 1.
* This is uniformly good away from z=1.
*
* Li_2(z) = Sum[ a^n/n! H_n(theta), {n, 0, Infinity}]
*
* where
* H_n(theta) = Sum[ e^(i m theta) m^n / m^2, {m, 1, Infinity}]
* a = ln(r)
*
* H_0(t) = Gl_2(t) + i Cl_2(t)
* H_1(t) = 1/2 ln(2(1-c)) + I atan2(-s, 1-c)
* H_2(t) = -1/2 + I/2 s/(1-c)
* H_3(t) = -1/2 /(1-c)
* H_4(t) = -I/2 s/(1-c)^2
* H_5(t) = 1/2 (2 + c)/(1-c)^2
* H_6(t) = I/2 s/(1-c)^5 (8(1-c) - s^2 (3 + c))
*/
static
int
dilogc_series_3(
const double r,
const double x,
const double y,
gsl_sf_result * real_result,
gsl_sf_result * imag_result
)
{
const double theta = atan2(y, x);
const double cos_theta = x/r;
const double sin_theta = y/r;
const double a = log(r);
const double omc = 1.0 - cos_theta;
const double omc2 = omc*omc;
double H_re[7];
double H_im[7];
double an, nfact;
double sum_re, sum_im;
gsl_sf_result Him0;
int n;
H_re[0] = M_PI*M_PI/6.0 + 0.25*(theta*theta - 2.0*M_PI*fabs(theta));
gsl_sf_clausen_e(theta, &Him0);
H_im[0] = Him0.val;
H_re[1] = -0.5*log(2.0*omc);
H_im[1] = -atan2(-sin_theta, omc);
H_re[2] = -0.5;
H_im[2] = 0.5 * sin_theta/omc;
H_re[3] = -0.5/omc;
H_im[3] = 0.0;
H_re[4] = 0.0;
H_im[4] = -0.5*sin_theta/omc2;
H_re[5] = 0.5 * (2.0 + cos_theta)/omc2;
H_im[5] = 0.0;
H_re[6] = 0.0;
H_im[6] = 0.5 * sin_theta/(omc2*omc2*omc) * (8.0*omc - sin_theta*sin_theta*(3.0 + cos_theta));
sum_re = H_re[0];
sum_im = H_im[0];
an = 1.0;
nfact = 1.0;
for(n=1; n<=6; n++) {
double t;
an *= a;
nfact *= n;
t = an/nfact;
sum_re += t * H_re[n];
sum_im += t * H_im[n];
}
real_result->val = sum_re;
real_result->err = 2.0 * 6.0 * GSL_DBL_EPSILON * fabs(sum_re) + fabs(an/nfact);
imag_result->val = sum_im;
imag_result->err = 2.0 * 6.0 * GSL_DBL_EPSILON * fabs(sum_im) + Him0.err + fabs(an/nfact);
return GSL_SUCCESS;
}
/* Calculate complex dilogarithm Li_2(z) in the fundamental region,
* which we take to be the intersection of the unit disk with the
* half-space x < MAGIC_SPLIT_VALUE. It turns out that 0.732 is a
* nice choice for MAGIC_SPLIT_VALUE since then points mapped out
* of the x > MAGIC_SPLIT_VALUE region and into another part of the
* unit disk are bounded in radius by MAGIC_SPLIT_VALUE itself.
*
* If |z| < 0.98 we use a direct series summation. Otherwise z is very
* near the unit circle, and the series_2 expansion is used; see above.
* Because the fundamental region is bounded away from z = 1, this
* works well.
*/
static
int
dilogc_fundamental(double r, double x, double y, gsl_sf_result * real_dl, gsl_sf_result * imag_dl)
{
if(r > 0.98)
return dilogc_series_3(r, x, y, real_dl, imag_dl);
else if(r > 0.25)
return dilogc_series_2(r, x, y, real_dl, imag_dl);
else
return dilogc_series_1(r, x, y, real_dl, imag_dl);
}
/* Compute Li_2(z) for z in the unit disk, |z| < 1. If z is outside
* the fundamental region, which means that it is too close to z = 1,
* then it is reflected into the fundamental region using the identity
*
* Li2(z) = -Li2(1-z) + zeta(2) - ln(z) ln(1-z).
*/
static
int
dilogc_unitdisk(double x, double y, gsl_sf_result * real_dl, gsl_sf_result * imag_dl)
{
static const double MAGIC_SPLIT_VALUE = 0.732;
static const double zeta2 = M_PI*M_PI/6.0;
const double r = hypot(x, y);
if(x > MAGIC_SPLIT_VALUE)
{
/* Reflect away from z = 1 if we are too close. The magic value
* insures that the reflected value of the radius satisfies the
* related inequality r_tmp < MAGIC_SPLIT_VALUE.
*/
const double x_tmp = 1.0 - x;
const double y_tmp = - y;
const double r_tmp = hypot(x_tmp, y_tmp);
/* const double cos_theta_tmp = x_tmp/r_tmp; */
/* const double sin_theta_tmp = y_tmp/r_tmp; */
gsl_sf_result result_re_tmp;
gsl_sf_result result_im_tmp;
const int stat_dilog = dilogc_fundamental(r_tmp, x_tmp, y_tmp, &result_re_tmp, &result_im_tmp);
const double lnz = log(r); /* log(|z|) */
const double lnomz = log(r_tmp); /* log(|1-z|) */
const double argz = atan2(y, x); /* arg(z) assuming principal branch */
const double argomz = atan2(y_tmp, x_tmp); /* arg(1-z) */
real_dl->val = -result_re_tmp.val + zeta2 - lnz*lnomz + argz*argomz;
real_dl->err = result_re_tmp.err;
real_dl->err += 2.0 * GSL_DBL_EPSILON * (zeta2 + fabs(lnz*lnomz) + fabs(argz*argomz));
imag_dl->val = -result_im_tmp.val - argz*lnomz - argomz*lnz;
imag_dl->err = result_im_tmp.err;
imag_dl->err += 2.0 * GSL_DBL_EPSILON * (fabs(argz*lnomz) + fabs(argomz*lnz));
return stat_dilog;
}
else
{
return dilogc_fundamental(r, x, y, real_dl, imag_dl);
}
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_dilog_e(const double x, gsl_sf_result * result)
{
if(x >= 0.0) {
return dilog_xge0(x, result);
}
else {
gsl_sf_result d1, d2;
int stat_d1 = dilog_xge0( -x, &d1);
int stat_d2 = dilog_xge0(x*x, &d2);
result->val = -d1.val + 0.5 * d2.val;
result->err = d1.err + 0.5 * d2.err;
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_d1, stat_d2);
}
}
int
gsl_sf_complex_dilog_xy_e(
const double x,
const double y,
gsl_sf_result * real_dl,
gsl_sf_result * imag_dl
)
{
const double zeta2 = M_PI*M_PI/6.0;
const double r2 = x*x + y*y;
if(y == 0.0)
{
if(x >= 1.0)
{
imag_dl->val = -M_PI * log(x);
imag_dl->err = 2.0 * GSL_DBL_EPSILON * fabs(imag_dl->val);
}
else
{
imag_dl->val = 0.0;
imag_dl->err = 0.0;
}
return gsl_sf_dilog_e(x, real_dl);
}
else if(fabs(r2 - 1.0) < GSL_DBL_EPSILON)
{
/* Lewin A.2.4.1 and A.2.4.2 */
const double theta = atan2(y, x);
const double term1 = theta*theta/4.0;
const double term2 = M_PI*fabs(theta)/2.0;
real_dl->val = zeta2 + term1 - term2;
real_dl->err = 2.0 * GSL_DBL_EPSILON * (zeta2 + term1 + term2);
return gsl_sf_clausen_e(theta, imag_dl);
}
else if(r2 < 1.0)
{
return dilogc_unitdisk(x, y, real_dl, imag_dl);
}
else
{
/* Reduce argument to unit disk. */
const double r = sqrt(r2);
const double x_tmp = x/r2;
const double y_tmp = -y/r2;
/* const double r_tmp = 1.0/r; */
gsl_sf_result result_re_tmp, result_im_tmp;
const int stat_dilog =
dilogc_unitdisk(x_tmp, y_tmp, &result_re_tmp, &result_im_tmp);
/* Unwind the inversion.
*
* Li_2(z) + Li_2(1/z) = -zeta(2) - 1/2 ln(-z)^2
*/
const double theta = atan2(y, x);
const double theta_abs = fabs(theta);
const double theta_sgn = ( theta < 0.0 ? -1.0 : 1.0 );
const double ln_minusz_re = log(r);
const double ln_minusz_im = theta_sgn * (theta_abs - M_PI);
const double lmz2_re = ln_minusz_re*ln_minusz_re - ln_minusz_im*ln_minusz_im;
const double lmz2_im = 2.0*ln_minusz_re*ln_minusz_im;
real_dl->val = -result_re_tmp.val - 0.5 * lmz2_re - zeta2;
real_dl->err = result_re_tmp.err + 2.0*GSL_DBL_EPSILON*(0.5 * fabs(lmz2_re) + zeta2);
imag_dl->val = -result_im_tmp.val - 0.5 * lmz2_im;
imag_dl->err = result_im_tmp.err + 2.0*GSL_DBL_EPSILON*fabs(lmz2_im);
return stat_dilog;
}
}
int
gsl_sf_complex_dilog_e(
const double r,
const double theta,
gsl_sf_result * real_dl,
gsl_sf_result * imag_dl
)
{
const double cos_theta = cos(theta);
const double sin_theta = sin(theta);
const double x = r * cos_theta;
const double y = r * sin_theta;
return gsl_sf_complex_dilog_xy_e(x, y, real_dl, imag_dl);
}
int
gsl_sf_complex_spence_xy_e(
const double x,
const double y,
gsl_sf_result * real_sp,
gsl_sf_result * imag_sp
)
{
const double oms_x = 1.0 - x;
const double oms_y = - y;
return gsl_sf_complex_dilog_xy_e(oms_x, oms_y, real_sp, imag_sp);
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_dilog(const double x)
{
EVAL_RESULT(gsl_sf_dilog_e(x, &result));
}
|