File: covariance_source.c

package info (click to toggle)
gsl 2.3%2Bdfsg-1
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 20,392 kB
  • ctags: 15,188
  • sloc: ansic: 235,014; sh: 11,541; makefile: 869
file content (182 lines) | stat: -rw-r--r-- 6,109 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/* statistics/covar_source.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

static double
FUNCTION(compute,covariance) (const BASE data1[], const size_t stride1,
                              const BASE data2[], const size_t stride2,
                              const size_t n, 
                              const double mean1, const double mean2);

static double
FUNCTION(compute,covariance) (const BASE data1[], const size_t stride1,
                              const BASE data2[], const size_t stride2,
                              const size_t n, 
                              const double mean1, const double mean2)
{
  /* takes a dataset and finds the covariance */

  long double covariance = 0 ;

  size_t i;

  /* find the sum of the squares */
  for (i = 0; i < n; i++)
    {
      const long double delta1 = (data1[i * stride1] - mean1);
      const long double delta2 = (data2[i * stride2] - mean2);
      covariance += (delta1 * delta2 - covariance) / (i + 1);
    }

  return covariance ;
}

double 
FUNCTION(gsl_stats,covariance_m) (const BASE data1[], const size_t stride1, 
                                  const BASE data2[], const size_t stride2, 
                                  const size_t n, 
                                  const double mean1, const double mean2)
{
  const double covariance = FUNCTION(compute,covariance) (data1, stride1,
                                                          data2, stride2,
                                                          n, 
                                                          mean1, mean2);
  
  return covariance * ((double)n / (double)(n - 1));
}

double 
FUNCTION(gsl_stats,covariance) (const BASE data1[], const size_t stride1,
                                const BASE data2[], const size_t stride2,
                                const size_t n)
{
  const double mean1 = FUNCTION(gsl_stats,mean) (data1, stride1, n);
  const double mean2 = FUNCTION(gsl_stats,mean) (data2, stride2, n);

  return FUNCTION(gsl_stats,covariance_m)(data1, stride1, 
                                          data2, stride2, 
                                          n, 
                                          mean1, mean2);
}

/*
gsl_stats_correlation()
  Calculate Pearson correlation = cov(X, Y) / (sigma_X * sigma_Y)
This routine efficiently computes the correlation in one pass of the
data and makes use of the algorithm described in:

B. P. Welford, "Note on a Method for Calculating Corrected Sums of
Squares and Products", Technometrics, Vol 4, No 3, 1962.

This paper derives a numerically stable recurrence to compute a sum
of products

S = sum_{i=1..N} [ (x_i - mu_x) * (y_i - mu_y) ]

with the relation

S_n = S_{n-1} + ((n-1)/n) * (x_n - mu_x_{n-1}) * (y_n - mu_y_{n-1})
*/

double
FUNCTION(gsl_stats,correlation) (const BASE data1[], const size_t stride1,
                                 const BASE data2[], const size_t stride2,
                                 const size_t n)
{
  size_t i;
  long double sum_xsq = 0.0;
  long double sum_ysq = 0.0;
  long double sum_cross = 0.0;
  long double ratio;
  long double delta_x, delta_y;
  long double mean_x, mean_y;
  long double r;

  /*
   * Compute:
   * sum_xsq = Sum [ (x_i - mu_x)^2 ],
   * sum_ysq = Sum [ (y_i - mu_y)^2 ] and
   * sum_cross = Sum [ (x_i - mu_x) * (y_i - mu_y) ]
   * using the above relation from Welford's paper
   */

  mean_x = data1[0 * stride1];
  mean_y = data2[0 * stride2];

  for (i = 1; i < n; ++i)
    {
      ratio = i / (i + 1.0);
      delta_x = data1[i * stride1] - mean_x;
      delta_y = data2[i * stride2] - mean_y;
      sum_xsq += delta_x * delta_x * ratio;
      sum_ysq += delta_y * delta_y * ratio;
      sum_cross += delta_x * delta_y * ratio;
      mean_x += delta_x / (i + 1.0);
      mean_y += delta_y / (i + 1.0);
    }

  r = sum_cross / (sqrt(sum_xsq) * sqrt(sum_ysq));

  return r;
}

/*
gsl_stats_spearman()
  Compute Spearman rank correlation coefficient

Inputs: data1   - data1 vector
        stride1 - stride of data1
        data2   - data2 vector
        stride2 - stride of data2
        n       - number of elements in data1 and data2
        work    - additional workspace of size 2*n

Return: Spearman rank correlation coefficient
*/

double
FUNCTION(gsl_stats,spearman) (const BASE data1[], const size_t stride1,
                              const BASE data2[], const size_t stride2,
                              const size_t n, double work[])
{
  size_t i;
  gsl_vector_view ranks1 = gsl_vector_view_array(&work[0], n);
  gsl_vector_view ranks2 = gsl_vector_view_array(&work[n], n);
  double r;

  for (i = 0; i < n; ++i)
    {
      gsl_vector_set(&ranks1.vector, i, data1[i * stride1]);
      gsl_vector_set(&ranks2.vector, i, data2[i * stride2]);
    }

  /* sort data1 and update data2 at same time; compute rank of data1 */
  gsl_sort_vector2(&ranks1.vector, &ranks2.vector);
  compute_rank(&ranks1.vector);

  /* now sort data2, updating ranks1 appropriately; compute rank of data2 */
  gsl_sort_vector2(&ranks2.vector, &ranks1.vector);
  compute_rank(&ranks2.vector);

  /* compute correlation of rank vectors in double precision */
  r = gsl_stats_correlation(ranks1.vector.data, ranks1.vector.stride,
                            ranks2.vector.data, ranks2.vector.stride,
                            n);

  return r;
}