1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/* statistics/covar_source.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
static double
FUNCTION(compute,covariance) (const BASE data1[], const size_t stride1,
const BASE data2[], const size_t stride2,
const size_t n,
const double mean1, const double mean2);
static double
FUNCTION(compute,covariance) (const BASE data1[], const size_t stride1,
const BASE data2[], const size_t stride2,
const size_t n,
const double mean1, const double mean2)
{
/* takes a dataset and finds the covariance */
long double covariance = 0 ;
size_t i;
/* find the sum of the squares */
for (i = 0; i < n; i++)
{
const long double delta1 = (data1[i * stride1] - mean1);
const long double delta2 = (data2[i * stride2] - mean2);
covariance += (delta1 * delta2 - covariance) / (i + 1);
}
return covariance ;
}
double
FUNCTION(gsl_stats,covariance_m) (const BASE data1[], const size_t stride1,
const BASE data2[], const size_t stride2,
const size_t n,
const double mean1, const double mean2)
{
const double covariance = FUNCTION(compute,covariance) (data1, stride1,
data2, stride2,
n,
mean1, mean2);
return covariance * ((double)n / (double)(n - 1));
}
double
FUNCTION(gsl_stats,covariance) (const BASE data1[], const size_t stride1,
const BASE data2[], const size_t stride2,
const size_t n)
{
const double mean1 = FUNCTION(gsl_stats,mean) (data1, stride1, n);
const double mean2 = FUNCTION(gsl_stats,mean) (data2, stride2, n);
return FUNCTION(gsl_stats,covariance_m)(data1, stride1,
data2, stride2,
n,
mean1, mean2);
}
/*
gsl_stats_correlation()
Calculate Pearson correlation = cov(X, Y) / (sigma_X * sigma_Y)
This routine efficiently computes the correlation in one pass of the
data and makes use of the algorithm described in:
B. P. Welford, "Note on a Method for Calculating Corrected Sums of
Squares and Products", Technometrics, Vol 4, No 3, 1962.
This paper derives a numerically stable recurrence to compute a sum
of products
S = sum_{i=1..N} [ (x_i - mu_x) * (y_i - mu_y) ]
with the relation
S_n = S_{n-1} + ((n-1)/n) * (x_n - mu_x_{n-1}) * (y_n - mu_y_{n-1})
*/
double
FUNCTION(gsl_stats,correlation) (const BASE data1[], const size_t stride1,
const BASE data2[], const size_t stride2,
const size_t n)
{
size_t i;
long double sum_xsq = 0.0;
long double sum_ysq = 0.0;
long double sum_cross = 0.0;
long double ratio;
long double delta_x, delta_y;
long double mean_x, mean_y;
long double r;
/*
* Compute:
* sum_xsq = Sum [ (x_i - mu_x)^2 ],
* sum_ysq = Sum [ (y_i - mu_y)^2 ] and
* sum_cross = Sum [ (x_i - mu_x) * (y_i - mu_y) ]
* using the above relation from Welford's paper
*/
mean_x = data1[0 * stride1];
mean_y = data2[0 * stride2];
for (i = 1; i < n; ++i)
{
ratio = i / (i + 1.0);
delta_x = data1[i * stride1] - mean_x;
delta_y = data2[i * stride2] - mean_y;
sum_xsq += delta_x * delta_x * ratio;
sum_ysq += delta_y * delta_y * ratio;
sum_cross += delta_x * delta_y * ratio;
mean_x += delta_x / (i + 1.0);
mean_y += delta_y / (i + 1.0);
}
r = sum_cross / (sqrt(sum_xsq) * sqrt(sum_ysq));
return r;
}
/*
gsl_stats_spearman()
Compute Spearman rank correlation coefficient
Inputs: data1 - data1 vector
stride1 - stride of data1
data2 - data2 vector
stride2 - stride of data2
n - number of elements in data1 and data2
work - additional workspace of size 2*n
Return: Spearman rank correlation coefficient
*/
double
FUNCTION(gsl_stats,spearman) (const BASE data1[], const size_t stride1,
const BASE data2[], const size_t stride2,
const size_t n, double work[])
{
size_t i;
gsl_vector_view ranks1 = gsl_vector_view_array(&work[0], n);
gsl_vector_view ranks2 = gsl_vector_view_array(&work[n], n);
double r;
for (i = 0; i < n; ++i)
{
gsl_vector_set(&ranks1.vector, i, data1[i * stride1]);
gsl_vector_set(&ranks2.vector, i, data2[i * stride2]);
}
/* sort data1 and update data2 at same time; compute rank of data1 */
gsl_sort_vector2(&ranks1.vector, &ranks2.vector);
compute_rank(&ranks1.vector);
/* now sort data2, updating ranks1 appropriately; compute rank of data2 */
gsl_sort_vector2(&ranks2.vector, &ranks1.vector);
compute_rank(&ranks2.vector);
/* compute correlation of rank vectors in double precision */
r = gsl_stats_correlation(ranks1.vector.data, ranks1.vector.stride,
ranks2.vector.data, ranks2.vector.stride,
n);
return r;
}
|