File: impulse.c

package info (click to toggle)
gsl 2.5%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 25,628 kB
  • sloc: ansic: 245,573; sh: 11,435; makefile: 911; python: 68
file content (283 lines) | stat: -rw-r--r-- 9,370 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/* filter/impulse.c
 *
 * Impulse detecting filters
 * 
 * Copyright (C) 2018 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */
 
#include <config.h>
#include <stdlib.h>
#include <math.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_filter.h>

static int filter_impulse(const double scale, const double epsilon, const double t, const gsl_vector * x, const gsl_vector * xmedian,
                          gsl_vector * y, gsl_vector * xsigma, size_t * noutlier, gsl_vector_int * ioutlier);
 
/*
gsl_filter_impulse_alloc()
  Allocate a workspace for impulse detection filtering.

Inputs: K - number of samples in window; if even, it is rounded up to
            the next odd, to have a symmetric window

Return: pointer to workspace
*/

gsl_filter_impulse_workspace *
gsl_filter_impulse_alloc(const size_t K)
{
  gsl_filter_impulse_workspace *w;

  w = calloc(1, sizeof(gsl_filter_impulse_workspace));
  if (w == 0)
    {
      GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM);
    }

  w->movstat_workspace_p = gsl_movstat_alloc(K);
  if (w->movstat_workspace_p == 0)
    {
      gsl_filter_impulse_free(w);
      return NULL;
    }

  return w;
}

void
gsl_filter_impulse_free(gsl_filter_impulse_workspace * w)
{
  if (w->movstat_workspace_p)
    gsl_movstat_free(w->movstat_workspace_p);

  free(w);
}

/*
gsl_filter_impulse()
  Apply an impulse detection filter to an input vector. The filter output is

y_i = { x_i, |x_i - m_i| <= t * S_i
      { m_i, |x_i - m_i| > t * S_i

where m_i is the median of the window W_i^H and S_i is the scale estimate (MAD, IQR, S_n, Q_n)

Inputs: endtype    - how to handle signal end points
        scale_type - which statistic to use for scale estimate (MAD, IQR, etc)
        t          - number of standard deviations required to identity outliers (>= 0)
        x          - input vector, size n
        y          - (output) filtered vector, size n
        xmedian    - (output) vector of median values of x, size n
                     xmedian_i = median of window centered on x_i
        xsigma     - (output) vector of estimated local standard deviations of x, size n
                     xsigma_i = sigma for i-th window: scale*MAD
        noutlier   - (output) number of outliers detected
        ioutlier   - (output) boolean array indicating outliers identified, size n; may be NULL
                     ioutlier_i = 1 if outlier detected, 0 if not
        w          - workspace

Notes:
*/

int
gsl_filter_impulse(const gsl_filter_end_t endtype, const gsl_filter_scale_t scale_type, const double t,
                   const gsl_vector * x, gsl_vector * y, gsl_vector * xmedian, gsl_vector * xsigma, size_t * noutlier,
                   gsl_vector_int * ioutlier, gsl_filter_impulse_workspace * w)
{
  const size_t n = x->size;

  if (n != y->size)
    {
      GSL_ERROR("input and output vectors must have same length", GSL_EBADLEN);
    }
  else if (xmedian->size != n)
    {
      GSL_ERROR("xmedian vector must match input size", GSL_EBADLEN);
    }
  else if (xsigma->size != n)
    {
      GSL_ERROR("xsigma vector must match input size", GSL_EBADLEN);
    }
  else if ((ioutlier != NULL) && (ioutlier->size != n))
    {
      GSL_ERROR("ioutlier vector must match input size", GSL_EBADLEN);
    }
  else if (t < 0.0)
    {
      GSL_ERROR("t must be non-negative", GSL_EDOM);
    }
  else
    {
      int status;
      double scale = 1.0;

      switch (scale_type)
        {
          case GSL_FILTER_SCALE_MAD:
            {
              /* compute window medians and MADs */
              gsl_movstat_mad(endtype, x, xmedian, xsigma, w->movstat_workspace_p);

              break;
            }

          case GSL_FILTER_SCALE_IQR:
            {
              /* multiplication factor for IQR to estimate stddev for Gaussian signal */
              scale = 0.741301109252801;

              /* calculate the window medians */
              gsl_movstat_median(endtype, x, xmedian, w->movstat_workspace_p);
      
              /* calculate window IQRs */
              gsl_movstat_qqr(endtype, x, 0.25, xsigma, w->movstat_workspace_p);

              break;
            }

          case GSL_FILTER_SCALE_SN:
            {
              /* calculate the window medians */
              gsl_movstat_median(endtype, x, xmedian, w->movstat_workspace_p);
      
              /* calculate window S_n values */
              gsl_movstat_Sn(endtype, x, xsigma, w->movstat_workspace_p);

              break;
            }

          case GSL_FILTER_SCALE_QN:
            {
              /* calculate the window medians */
              gsl_movstat_median(endtype, x, xmedian, w->movstat_workspace_p);
      
              /* calculate window Q_n values */
              gsl_movstat_Qn(endtype, x, xsigma, w->movstat_workspace_p);

              break;
            }

          default:
            GSL_ERROR("unknown scale type", GSL_EDOM);
            break;
        }

      /* apply impulse detecting filter using previously computed scale estimate */
      status = filter_impulse(scale, 0.0, t, x, xmedian, y, xsigma, noutlier, ioutlier);

      return status;
    }
}

/*
filter_impulse()
  Apply an impulse detection filter to an input vector. The filter output is

y_i = { x_i, |x_i - m_i| <= t * S_i OR S_i < epsilon
      { m_i, |x_i - m_i| > t * S_i

where m_i is the median of the window W_i^H and S_i is the scale estimate (MAD, IQR, etc)

Inputs: scale    - scale factor to multiply xsigma to get unbiased estimate of stddev for Gaussian data
        epsilon  - minimum allowed scale estimate for identifying outliers
        t        - number of standard deviations required to identity outliers (>= 0)
        x        - input vector, size n
        xmedian  - vector of median values of x, size n
                   xmedian_i = median of window centered on x_i
        y        - (output) filtered vector, size n
        xsigma   - (output) vector of estimated local standard deviations of x, size n
                   xsigma_i = S_n for i-th window
        noutlier - (output) number of outliers detected
        ioutlier - (output) boolean array indicating outliers identified, size n; may be NULL
                   ioutlier_i = 1 if outlier detected, 0 if not

Notes:
1) If S_i = 0 or is very small for a particular sample, then the filter may erroneously flag the
sample as an outlier, since it will act as a standard median filter. To avoid this scenario, the
parameter epsilon specifies the minimum value of S_i which can be used in the filter test. Any
samples for which S_i < epsilon are passed through unchanged.
*/

static int
filter_impulse(const double scale, const double epsilon, const double t, const gsl_vector * x, const gsl_vector * xmedian,
               gsl_vector * y, gsl_vector * xsigma, size_t * noutlier, gsl_vector_int * ioutlier)
{
  const size_t n = x->size;

  if (n != y->size)
    {
      GSL_ERROR("input and output vectors must have same length", GSL_EBADLEN);
    }
  else if (xmedian->size != n)
    {
      GSL_ERROR("xmedian vector must match input size", GSL_EBADLEN);
    }
  else if (xsigma->size != n)
    {
      GSL_ERROR("xsigma vector must match input size", GSL_EBADLEN);
    }
  else if ((ioutlier != NULL) && (ioutlier->size != n))
    {
      GSL_ERROR("ioutlier vector must match input size", GSL_EBADLEN);
    }
  else if (t < 0.0)
    {
      GSL_ERROR("t must be non-negative", GSL_EDOM);
    }
  else
    {
      size_t i;

      *noutlier = 0;

      /* build output vector */
      for (i = 0; i < n; ++i)
        {
          double xi = gsl_vector_get(x, i);
          double xmedi = gsl_vector_get(xmedian, i);
          double absdevi = fabs(xi - xmedi); /* absolute deviation for this sample */
          double *xsigmai = gsl_vector_ptr(xsigma, i);

          /* multiply by scale factor to get estimate of standard deviation */
          *xsigmai *= scale;

          /*
           * If the absolute deviation for this sample is more than t stddevs
           * for this window (and S_i is sufficiently large to avoid scale implosion),
           * set the output value to the window median, otherwise use the original sample
           */
          if ((*xsigmai >= epsilon) && (absdevi > t * (*xsigmai)))
            {
              gsl_vector_set(y, i, xmedi);
              ++(*noutlier);
              if (ioutlier)
                gsl_vector_int_set(ioutlier, i, 1);
            }
          else
            {
              gsl_vector_set(y, i, xi);
              if (ioutlier)
                gsl_vector_int_set(ioutlier, i, 0);
            }
        }

      return GSL_SUCCESS;
    }
}