1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_multifit.h>
/* Fit
*
* y = X c
*
* where X is an n x p matrix of n observations for p variables.
*
* The solution includes a possible standard form Tikhonov regularization:
*
* c = (X^T X + lambda^2 I)^{-1} X^T y
*
* where lambda^2 is the Tikhonov regularization parameter.
*
* The function multifit_linear_svd() must first be called to
* compute the SVD decomposition of X
*
* Inputs: X - least squares matrix
* y - right hand side vector
* tol - singular value tolerance
* lambda - Tikhonov regularization parameter lambda;
* ignored if <= 0
* rank - (output) effective rank
* c - (output) model coefficient vector
* rnorm - (output) residual norm ||y - X c||
* snorm - (output) solution norm ||c||
* work - workspace
*
* Notes:
* 1) The dimensions of X must match work->n and work->p which are set
* by multifit_linear_svd()
* 2) On input:
* work->A contains U
* work->Q contains Q
* work->S contains singular values
* 3) If this function is called from gsl_multifit_wlinear(), then
* the input y points to work->t, which contains sqrt(W) y. Since
* work->t is also used as scratch workspace by this function, we
* do the necessary computations with y first to avoid problems.
* 4) When lambda <= 0, singular values are truncated when:
* s_j <= tol * s_0
*/
static int
multifit_linear_solve (const gsl_matrix * X,
const gsl_vector * y,
const double tol,
const double lambda,
size_t * rank,
gsl_vector * c,
double *rnorm,
double *snorm,
gsl_multifit_linear_workspace * work)
{
const size_t n = X->size1;
const size_t p = X->size2;
if (n != work->n || p != work->p)
{
GSL_ERROR("observation matrix does not match workspace", GSL_EBADLEN);
}
else if (n != y->size)
{
GSL_ERROR("number of observations in y does not match matrix",
GSL_EBADLEN);
}
else if (p != c->size)
{
GSL_ERROR ("number of parameters c does not match matrix",
GSL_EBADLEN);
}
else if (tol <= 0)
{
GSL_ERROR ("tolerance must be positive", GSL_EINVAL);
}
else
{
const double lambda_sq = lambda * lambda;
double rho_ls = 0.0; /* contribution to rnorm from OLS */
size_t j, p_eff;
/* these inputs are previously computed by multifit_linear_svd() */
gsl_matrix_view A = gsl_matrix_submatrix(work->A, 0, 0, n, p);
gsl_matrix_view Q = gsl_matrix_submatrix(work->Q, 0, 0, p, p);
gsl_vector_view S = gsl_vector_subvector(work->S, 0, p);
/* workspace */
gsl_matrix_view QSI = gsl_matrix_submatrix(work->QSI, 0, 0, p, p);
gsl_vector_view xt = gsl_vector_subvector(work->xt, 0, p);
gsl_vector_view D = gsl_vector_subvector(work->D, 0, p);
gsl_vector_view t = gsl_vector_subvector(work->t, 0, n);
/*
* Solve y = A c for c
* c = Q diag(s_i / (s_i^2 + lambda_i^2)) U^T y
*/
/* compute xt = U^T y */
gsl_blas_dgemv (CblasTrans, 1.0, &A.matrix, y, 0.0, &xt.vector);
if (n > p)
{
/*
* compute OLS residual norm = || y - U U^T y ||;
* for n = p, U U^T = I, so no need to calculate norm
*/
gsl_vector_memcpy(&t.vector, y);
gsl_blas_dgemv(CblasNoTrans, -1.0, &A.matrix, &xt.vector, 1.0, &t.vector);
rho_ls = gsl_blas_dnrm2(&t.vector);
}
if (lambda > 0.0)
{
/* xt <-- [ s(i) / (s(i)^2 + lambda^2) ] .* U^T y */
for (j = 0; j < p; ++j)
{
double sj = gsl_vector_get(&S.vector, j);
double f = (sj * sj) / (sj * sj + lambda_sq);
double *ptr = gsl_vector_ptr(&xt.vector, j);
/* use D as workspace for residual norm */
gsl_vector_set(&D.vector, j, (1.0 - f) * (*ptr));
*ptr *= sj / (sj*sj + lambda_sq);
}
/* compute regularized solution vector */
gsl_blas_dgemv (CblasNoTrans, 1.0, &Q.matrix, &xt.vector, 0.0, c);
/* compute solution norm */
*snorm = gsl_blas_dnrm2(c);
/* compute residual norm */
*rnorm = gsl_blas_dnrm2(&D.vector);
if (n > p)
{
/* add correction to residual norm (see eqs 6-7 of [1]) */
*rnorm = sqrt((*rnorm) * (*rnorm) + rho_ls * rho_ls);
}
/* reset D vector */
gsl_vector_set_all(&D.vector, 1.0);
}
else
{
/* Scale the matrix Q, QSI = Q S^{-1} */
gsl_matrix_memcpy (&QSI.matrix, &Q.matrix);
{
double s0 = gsl_vector_get (&S.vector, 0);
p_eff = 0;
for (j = 0; j < p; j++)
{
gsl_vector_view column = gsl_matrix_column (&QSI.matrix, j);
double sj = gsl_vector_get (&S.vector, j);
double alpha;
if (sj <= tol * s0)
{
alpha = 0.0;
}
else
{
alpha = 1.0 / sj;
p_eff++;
}
gsl_vector_scale (&column.vector, alpha);
}
*rank = p_eff;
}
gsl_blas_dgemv (CblasNoTrans, 1.0, &QSI.matrix, &xt.vector, 0.0, c);
/* Unscale the balancing factors */
gsl_vector_div (c, &D.vector);
*snorm = gsl_blas_dnrm2(c);
*rnorm = rho_ls;
}
return GSL_SUCCESS;
}
}
|