File: legendre_source.c

package info (click to toggle)
gsl 2.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 26,176 kB
  • sloc: ansic: 255,377; sh: 11,435; makefile: 903; python: 68
file content (599 lines) | stat: -rw-r--r-- 17,924 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/* specfunc/legendre_source.c
 * 
 * Copyright (C) 2009-2013 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* define various macros for functions below */

#define CONCAT2x(a,b)   a ## _ ## b 
#define CONCAT3x(a,b,c) a ## _ ## b ## _ ## c

#if defined(LEGENDRE)
#define FUNCTION(dir,name) CONCAT2x(dir,name)
#define OUTPUT result_array
#define OUTPUT_ARG double result_array[]

#elif defined(LEGENDRE_DERIV)
#define FUNCTION(dir,name) CONCAT3x(dir,deriv,name)
#define OUTPUT result_array, result_deriv_array
#define OUTPUT_ARG double result_array[], double result_deriv_array[]

#elif defined(LEGENDRE_DERIV_ALT)
#define FUNCTION(dir,name) CONCAT3x(dir,deriv_alt,name)
#define OUTPUT result_array, result_deriv_array
#define OUTPUT_ARG double result_array[], double result_deriv_array[]
#define LEGENDRE_DERIV

#elif defined(LEGENDRE_DERIV2)
#define FUNCTION(dir,name) CONCAT3x(dir,deriv2,name)
#define OUTPUT result_array, result_deriv_array, result_deriv2_array
#define OUTPUT_ARG double result_array[], double result_deriv_array[], double result_deriv2_array[]
#define LEGENDRE_DERIV

#elif defined(LEGENDRE_DERIV2_ALT)
#define FUNCTION(dir,name) CONCAT3x(dir,deriv2_alt,name)
#define OUTPUT result_array, result_deriv_array, result_deriv2_array
#define OUTPUT_ARG double result_array[], double result_deriv_array[], double result_deriv2_array[]
#define LEGENDRE_DERIV
#define LEGENDRE_DERIV2
#define LEGENDRE_DERIV_ALT

#endif

static int FUNCTION (legendre, array_schmidt_e)
(const size_t lmax, const double x, const double csphase, OUTPUT_ARG);
static int FUNCTION(legendre, array_none_e)
(const size_t lmax, const double x, const double csphase, OUTPUT_ARG);

/*
gsl_sf_legendre_array()

Inputs: norm                - normlization type
        lmax                - maximum degree
        x                   - input argument
        result_array        - (output) normalized P_{lm}
        result_deriv_array  - (output) normalized P'_{lm}
        result_deriv2_array - (output) normalized P''_{lm}
*/

int
FUNCTION (gsl_sf_legendre, array)
(const gsl_sf_legendre_t norm, const size_t lmax, const double x,
 OUTPUT_ARG)
{
  int s = FUNCTION (gsl_sf_legendre, array_e)(norm, lmax, x, 1.0, OUTPUT);
  return s;
}

/*
gsl_sf_legendre_array_e()

Inputs: norm                - normlization type
        lmax                - maximum degree
        x                   - input argument
        csphase             - Condon-Shortley phase
        result_array        - (output) normalized P_{lm}
        result_deriv_array  - (output) normalized P'_{lm}
        result_deriv2_array - (output) normalized P''_{lm}
*/

int
FUNCTION (gsl_sf_legendre, array_e)
(const gsl_sf_legendre_t norm, const size_t lmax, const double x,
 const double csphase, OUTPUT_ARG)
{
  int s;
  const size_t nlm = gsl_sf_legendre_nlm(lmax);
#if !defined(LEGENDRE_DERIV_ALT)
  size_t i;
#if defined(LEGENDRE_DERIV) || defined(LEGENDRE_DERIV2)
  const double u = sqrt((1.0 - x) * (1.0 + x));
  const double uinv = 1.0 / u;
#endif
#if defined(LEGENDRE_DERIV2)
  const double uinv2 = uinv * uinv;
#endif
#endif
  double fac1 = 0.0, fac2 = 0.0; /* normalization factors */

  if (norm == GSL_SF_LEGENDRE_NONE)
    {
      /* compute P_{lm}(x) */
      s = FUNCTION(legendre,array_none_e)(lmax, x, csphase, OUTPUT);
    }
  else
    {
      /* compute S_{lm}(x) */
      s = FUNCTION(legendre,array_schmidt_e)(lmax, x, csphase, OUTPUT);
    }

#if !defined(LEGENDRE_DERIV_ALT)
  /* scale derivative arrays to recover P'(x) and P''(x) */
  for (i = 0; i < nlm; ++i)
    {
#if defined(LEGENDRE_DERIV2)
      double dp = result_deriv_array[i];
      double d2p = result_deriv2_array[i];

      result_deriv2_array[i] = (d2p - x * uinv * dp) * uinv2;
#endif
#if defined(LEGENDRE_DERIV)
      result_deriv_array[i] *= -uinv;
#endif
    }
#endif

  /* apply scaling for requested normalization */
  if (norm == GSL_SF_LEGENDRE_SCHMIDT || norm == GSL_SF_LEGENDRE_NONE)
    {
      return s;
    }
  else if (norm == GSL_SF_LEGENDRE_SPHARM)
    {
      fac1 = 1.0 / sqrt(4.0 * M_PI);
      fac2 = 1.0 / sqrt(8.0 * M_PI);
    }
  else if (norm == GSL_SF_LEGENDRE_FULL)
    {
      fac1 = 1.0 / sqrt(2.0);
      fac2 = 1.0 / sqrt(4.0);
    }

  /*
   * common code for different normalizations
   * P_{l0} = fac1 * sqrt(2l + 1) * S_{l0}
   * P_{lm} = fac2 * sqrt(2l + 1) * S_{lm}, m > 0
   */
  {
    size_t l, m;
    size_t twoellp1 = 1; /* 2l + 1 */
    double *sqrts = &(result_array[nlm]);

    for (l = 0; l <= lmax; ++l)
      {
        result_array[gsl_sf_legendre_array_index(l, 0)] *=
          sqrts[twoellp1] * fac1;
#if defined(LEGENDRE_DERIV)
        result_deriv_array[gsl_sf_legendre_array_index(l, 0)] *=
          sqrts[twoellp1] * fac1;
#endif
#if defined(LEGENDRE_DERIV2)
        result_deriv2_array[gsl_sf_legendre_array_index(l, 0)] *=
          sqrts[twoellp1] * fac1;
#endif

        for (m = 1; m <= l; ++m)
          {
            result_array[gsl_sf_legendre_array_index(l, m)] *=
              sqrts[twoellp1] * fac2;
#if defined(LEGENDRE_DERIV)
            result_deriv_array[gsl_sf_legendre_array_index(l, m)] *=
              sqrts[twoellp1] * fac2;
#endif
#if defined(LEGENDRE_DERIV2)
            result_deriv2_array[gsl_sf_legendre_array_index(l, m)] *=
              sqrts[twoellp1] * fac2;
#endif
          }

        twoellp1 += 2;
      }
  }

  return s;
}

/*
legendre,array_schmidt_e()
  This routine computes Schmidt semi-normalized associated
Legendre polynomials and their first and second derivatives.

Inputs: lmax                - maximum order
        x                   - legendre argument in [-1,1]
        csphase             - -1.0 to include CS phase (-1)^m,
                               1.0 to not include
        result_array        - (output) where to store P_{lm}(x) values
        result_deriv_array  - (output) where to store
                              d/dtheta P_{lm}(x) values
        result_deriv2_array - (output) where to store
                              d^2/dtheta^2 P_{lm}(x) values
*/

static int
FUNCTION(legendre, array_schmidt_e)
(const size_t lmax, const double x, const double csphase, OUTPUT_ARG)
{
  if (x > 1.0 || x < -1.0)
    {
      GSL_ERROR("x is outside [-1,1]", GSL_EDOM);
    }
#if defined(LEGENDRE_DERIV) || defined(LEGENDRE_DERIV2)
  else if (fabs(x) == 1.0)
    {
      GSL_ERROR("x cannot equal 1 or -1 for derivative computation", GSL_EDOM);
    }
#endif
  else if (csphase != 1.0 && csphase != -1.0)
    {
      GSL_ERROR("csphase has invalid value", GSL_EDOM);
    }
  else
    {
      const double eps = 1.0e-280;
      const double u = sqrt((1.0 - x) * (1.0 + x)); /* sin(theta) */
#if defined(LEGENDRE_DERIV)
      const double uinv = 1.0 / u;
#endif
#if defined(LEGENDRE_DERIV2)
      const double uinv2 = 1.0 / u / u;
#endif
#if defined(LEGENDRE_DERIV) || defined(LEGENDRE_DERIV2)
      const double xbyu = x * uinv; /* x / u */
#endif
      size_t l, m;
      size_t k, idxmm;
      double plm, /* eps * S(l,m) / u^m */
             pmm; /* eps * S(m,m) / u^m */
      double rescalem;
      double pm1, /* S(l-1,m) */
             pm2; /* S(l-2,m) */
      size_t nlm = gsl_sf_legendre_nlm(lmax);
      double *sqrts = &(result_array[nlm]);

      /* precompute square root factors for recurrence */
      legendre_sqrts(lmax, sqrts);

      /* initial values S(0,0) and S(1,0) */
      pm2 = 1.0; /* S(0,0) */
      pm1 = x;   /* S(1,0) */

      result_array[0] = pm2;
#if defined(LEGENDRE_DERIV)
      result_deriv_array[0] = 0.0;
#endif
#if defined(LEGENDRE_DERIV2)
      result_deriv2_array[0] = 0.0;
#endif

      if (lmax == 0)
        return GSL_SUCCESS;

      result_array[1] = pm1;
#if defined(LEGENDRE_DERIV)
      result_deriv_array[1] = -u;
#endif
#if defined(LEGENDRE_DERIV2)
      result_deriv2_array[1] = -x;
#endif

      /* Compute S(l,0) for l=2..lmax, no scaling required */

      k = 1; /* idx(1,0) */
      for (l = 2; l <= lmax; ++l)
        {
          double linv = 1.0 / (double)l;

          k += l;  /* idx(l,m) = idx(l-1,m) + l */

          plm = (2.0 - linv) * x * pm1 - (1.0 - linv) * pm2;
          result_array[k] = plm;
#if defined(LEGENDRE_DERIV)
          result_deriv_array[k] = uinv * l * (x * plm - pm1);
#endif
#if defined(LEGENDRE_DERIV2)
          result_deriv2_array[k] = -(double) l * (l + 1.0) * plm -
                                   xbyu * result_deriv_array[k];
#endif
          pm2 = pm1;
          pm1 = plm;
        }

      /* Compute S(m,m), S(m+1,m) and S(l,m) */

      /*
       * pi_m = Prod_{i=2}^m sqrt[ (2m - 1) / (2m) ]
       * but pi_1 = 1.0, so initialize to sqrt(2) so that
       * the first m = 1 iteration of the loop will reset it
       * to 1.0. Starting with m = 2 it will begin accumulating
       * the correct terms.
       *
       * pmm = S(m,m) * eps / u^m = pi_m
       */
      pmm = sqrt(2.0) * eps;

      rescalem = 1.0 / eps;
      idxmm = 0; /* tracks idx(m,m), initialize to idx(0,0) */

      for (m = 1; m < lmax; ++m)
        {
          /* rescalem = u^m / eps */
          rescalem *= u;

          /*
           * compute:
           * S(m,m) = u * sqrt((2m - 1) / (2m)) S(m-1,m-1) = u^m * pi_m
           * d_t S(m,m) = m * x / u * S(m,m)
           */

          idxmm += m + 1; /* idx(m,m) = idx(m-1,m-1) + m + 1 */
          pmm *= csphase * sqrts[2 * m - 1] / sqrts[2 * m]; /* S(m,m) * eps / u^m */
          result_array[idxmm] = pmm * rescalem;
#if defined(LEGENDRE_DERIV)
          result_deriv_array[idxmm] = m * xbyu * result_array[idxmm];
#endif
#if defined(LEGENDRE_DERIV2)
          result_deriv2_array[idxmm] =
            m * (uinv2 * m - (m + 1.0)) * result_array[idxmm] -
            xbyu * result_deriv_array[idxmm];
#endif
          pm2 = pmm;

          /*
           * compute:
           * S(m+1,m) = sqrt(2 * m + 1) * x * S(m,m)
           * d_t S(m+1,m) = 1/u * ((m+1)*x*S(m+1,m) - sqrt(2*m+1)*S(m,m))
           */

          k = idxmm + m + 1; /* idx(m+1,m) = idx(m,m) + m + 1 */
          pm1 = x * sqrts[2 * m + 1] * pm2;
          result_array[k] = pm1 * rescalem;
#if defined(LEGENDRE_DERIV)
          result_deriv_array[k] =
            uinv * ((m + 1.0) * x * result_array[k] -
                    sqrts[2 * m + 1] * result_array[idxmm]);
#endif
#if defined(LEGENDRE_DERIV2)
          result_deriv2_array[k] =
            (m * m * uinv2 - (m + 1.0) * (m + 2.0)) * result_array[k] -
            xbyu * result_deriv_array[k];
#endif

          /* compute S(l,m) for l=m+2...lmax */
          for (l = m + 2; l <= lmax; ++l)
            {
              k += l; /* idx(l,m) = idx(l-1,m) + l */
              plm =
                (2*l - 1) / sqrts[l + m] / sqrts[l - m] * x * pm1 -
                sqrts[l - m - 1] * sqrts[l + m - 1] /
                sqrts[l + m] / sqrts[l - m] * pm2;
              result_array[k] = plm * rescalem;
#if defined(LEGENDRE_DERIV)
              result_deriv_array[k] =
                uinv * (l * x * result_array[k] -
                        sqrts[l + m] * sqrts[l - m] * result_array[k - l]);
#endif
#if defined(LEGENDRE_DERIV2)
              result_deriv2_array[k] =
                (m * m * uinv2 - l * (l + 1.0)) * result_array[k] -
                xbyu * result_deriv_array[k];
#endif
              pm2 = pm1;
              pm1 = plm;
            }
        } /* for (m = 1; m < lmax; ++m) */

      /* compute S(lmax,lmax) */

      rescalem *= u;
      idxmm += m + 1; /* idx(lmax,lmax) */
      pmm *= csphase * sqrts[2 * lmax - 1] / sqrts[2 * lmax];
      result_array[idxmm] = pmm * rescalem;
#if defined(LEGENDRE_DERIV)
      result_deriv_array[idxmm] = lmax * xbyu * result_array[idxmm];
#endif
#if defined(LEGENDRE_DERIV2)
      result_deriv2_array[idxmm] =
        lmax * (uinv2 * lmax - (lmax + 1.0)) * result_array[idxmm] -
        xbyu * result_deriv_array[idxmm];
#endif

      return GSL_SUCCESS;
    }
}

/*
legendre_array_none_e()
  This routine computes unnormalized associated Legendre polynomials
and their derivatives.

Inputs: lmax                - maximum order
        x                   - legendre argument in [-1,1]
        csphase             - -1.0 to include CS phase (-1)^m,
                               1.0 to not include
        result_array        - (output) where to store P_{lm}(x) values
        result_deriv_array  - (output) where to store
                              d/dtheta P_{lm}(x) values
        result_deriv2_array - (output) where to store
                              d^2/dtheta^2 P_{lm}(x) values
*/

static int
FUNCTION(legendre, array_none_e)
(const size_t lmax, const double x, const double csphase, OUTPUT_ARG)
{
  if (x > 1.0 || x < -1.0)
    {
      GSL_ERROR("x is outside [-1,1]", GSL_EDOM);
    }
#if defined(LEGENDRE_DERIV) || defined(LEGENDRE_DERIV2)
  else if (fabs(x) == 1.0)
    {
      GSL_ERROR("x cannot equal 1 or -1 for derivative computation", GSL_EDOM);
    }
#endif
  else if (csphase != 1.0 && csphase != -1.0)
    {
      GSL_ERROR("csphase has invalid value", GSL_EDOM);
    }
  else
    {
      const double u = sqrt((1.0 - x) * (1.0 + x)); /* sin(theta) */
#if defined(LEGENDRE_DERIV)
      const double uinv = 1.0 / u;
#endif
#if defined(LEGENDRE_DERIV2)
      const double uinv2 = 1.0 / u / u;
#endif
#if defined(LEGENDRE_DERIV) || defined(LEGENDRE_DERIV2)
      const double xbyu = x * uinv; /* x / u */
#endif
      size_t l, m;
      size_t k, idxmm;
      double plm, pmm;
      double pm1,    /* P(l-1,m) */
             pm2;    /* P(l-2,m) */
      double twomm1; /* 2*m - 1 */

      /* initial values P(0,0) and P(1,0) */

      pm2 = 1.0; /* P(0,0) */
      pm1 = x;   /* P(1,0) */

      result_array[0] = pm2;
#if defined(LEGENDRE_DERIV)
      result_deriv_array[0] = 0.0;
#endif
#if defined(LEGENDRE_DERIV2)
      result_deriv2_array[0] = 0.0;
#endif

      if (lmax == 0)
        return 0;

      result_array[1] = pm1;
#if defined(LEGENDRE_DERIV)
      result_deriv_array[1] = -u;
#endif
#if defined(LEGENDRE_DERIV2)
      result_deriv2_array[1] = -x;
#endif

      /* Compute P(l,0) */

      k = 1;
      for (l = 2; l <= lmax; ++l)
        {
          k += l;
          plm = ((2*l - 1) * x * pm1 - (l - 1) * pm2) / (double) l;
          result_array[k] = plm;
#if defined(LEGENDRE_DERIV)
          result_deriv_array[k] = -(double)l * (pm1 - x * plm) * uinv;
#endif
#if defined(LEGENDRE_DERIV2)
          result_deriv2_array[k] = -(double) l * (l + 1.0) * plm -
                                   xbyu * result_deriv_array[k];
#endif
          pm2 = pm1;
          pm1 = plm;
        }

      /* Compute P(m,m), P(m+1,m) and P(l,m) */

      pmm = 1.0;
      twomm1 = -1.0; /* 2 * m - 1 */

      idxmm = 0; /* tracks idx(m,m), initialize to idx(0,0) */

      for (m = 1; m <= lmax - 1; ++m)
        {
          /*
           * compute
           *
           * P(m,m) = u * (2m - 1) P(m-1,m-1)
           * and
           * dP(m,m)/dtheta = m * x * P(m,m) / u
           */
          idxmm += m + 1;
          twomm1 += 2.0;
          pmm *= csphase * u * twomm1;
          result_array[idxmm] = pmm;
#if defined(LEGENDRE_DERIV)
          result_deriv_array[idxmm] = m * xbyu * pmm;
#endif
#if defined(LEGENDRE_DERIV2)
          result_deriv2_array[idxmm] =
            m * (uinv2 * m - (m + 1.0)) * result_array[idxmm] -
            xbyu * result_deriv_array[idxmm];
#endif
          pm2 = pmm;

          /*
           * compute
           *
           * P(m+1,m) = (2 * m + 1) * x * P(m,m)
           * and
           * dP(m+1,m)/dt = -[(2*m + 1) * P(m,m) - (m+1) * x * P(m+1,m)]/u
           */
          k = idxmm + m + 1;
          pm1 = x * pmm * (2*m + 1);
          result_array[k] = pm1;
#if defined(LEGENDRE_DERIV)
          result_deriv_array[k] = -uinv * ((2*m + 1) * pmm - (m + 1) * x * pm1);
#endif
#if defined(LEGENDRE_DERIV2)
          result_deriv2_array[k] =
            (m * m * uinv2 - (m + 1.0) * (m + 2.0)) * result_array[k] -
            xbyu * result_deriv_array[k];
#endif

          /* compute P(l,m) */
          for (l = m + 2; l <= lmax; ++l)
            {
              k += l;
              plm = ((2*l - 1) * x * pm1 - (l + m - 1) * pm2) /
                    (double) (l - m);
              result_array[k] = plm;
#if defined(LEGENDRE_DERIV)
              result_deriv_array[k] = -uinv * ((l + m) * pm1 - l * x * plm);
#endif
#if defined(LEGENDRE_DERIV2)
              result_deriv2_array[k] =
                (m * m * uinv2 - l * (l + 1.0)) * result_array[k] -
                xbyu * result_deriv_array[k];
#endif
              pm2 = pm1;
              pm1 = plm;
            }
        } /* for (m = 1; m <= lmax - 1; ++m) */

      /* compute P(lmax,lmax) */

      idxmm += m + 1;
      twomm1 += 2.0;
      pmm *= csphase * u * twomm1;
      result_array[idxmm] = pmm;
#if defined(LEGENDRE_DERIV)
      result_deriv_array[idxmm] = lmax * x * pmm * uinv;
#endif
#if defined(LEGENDRE_DERIV2)
      result_deriv2_array[idxmm] =
        lmax * (uinv2 * lmax - (lmax + 1.0)) * result_array[idxmm] -
        xbyu * result_deriv_array[idxmm];
#endif

      return GSL_SUCCESS;
    }
} /* legendre_array_none_e() */

#undef FUNCTION
#undef CONCAT2x
#undef CONCAT3x
#undef OUTPUT
#undef OUTPUT_ARG
#undef LEGENDRE_DERIV
#undef LEGENDRE_DERIV2
#undef LEGENDRE_DERIV_ALT