1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
/* statistics/Qn_source.c
*
* Copyright (C) 2018 Patrick Alken
* Copyright (C) 2005, 2006, 2007 Martin Maechler, ETH Zurich
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* This is a merge of the C version of original files qn.f and sn.f,
* translated by f2c (version 20010821). ==== ====
* and then by f2c-clean,v 1.9 2000/01/13 13:46:53
* and further clean-edited manually by Martin Maechler.
*
* Further added interface functions to be called via .C() from R or S-plus
* Note that Peter Rousseeuw has explicitely given permission to
* use his code under the GPL for the R project.
*/
/* Original comments by the authors of the Fortran original code,
* (merged for Qn & Sn in one file by M.M.):
This file contains fortran functions for two new robust estimators
of scale denoted as Qn and Sn, decribed in Rousseeuw and Croux (1993).
These estimators have a high breakdown point and a bounded influence
function. The implementation given here is very fast (running in
O(n logn) time) and needs little storage space.
Rousseeuw, P.J. and Croux, C. (1993)
Alternatives to the Median Absolute Deviation",
Journal of the American Statistical Association, Vol. 88, 1273-1283.
For both estimators, implementations in the pascal language can be
obtained from the original authors.
This software may be used and copied freely for scientific
and/or non-commercial purposes, provided reference is made
to the abovementioned paper.
Note by MM: We have explicit permission from P.Rousseeuw to
licence it under the GNU Public Licence.
*/
#ifndef int64_t
#define int64_t long int
#endif
static BASE FUNCTION(Qn,whimed)(BASE * a, int * w, int n, BASE * a_cand, BASE * a_srt, int * w_cand);
/*
gsl_stats_Qn0_from_sorted_data()
Efficient algorithm for the scale estimator:
Q_n0 = { |x_i - x_j|; i<j }_(k) [ = Qn without scaling ]
i.e. the k-th order statistic of the |x_i - x_j|, where:
k = (floor(n/2) + 1 choose 2)
Inputs: sorted_data - sorted array containing the observations
stride - stride
n - length of 'sorted_data'
work - workspace of length 3n of type BASE
work_int - workspace of length 5n of type int
Return: Q_n statistic (without scale/correction factor); same type as input data
*/
BASE
FUNCTION(gsl_stats,Qn0_from_sorted_data) (const BASE sorted_data[],
const size_t stride,
const size_t n,
BASE work[],
int work_int[])
{
const int ni = (int) n;
BASE * a_srt = &work[n];
BASE * a_cand = &work[2*n];
int *left = &work_int[0];
int *right = &work_int[n];
int *p = &work_int[2*n];
int *q = &work_int[3*n];
int *weight = &work_int[4*n];
BASE trial = (BASE) 0.0;
int found = 0;
int h, i, j, jh;
/* following should be `long long int' : they can be of order n^2 */
int64_t k, knew, nl,nr, sump, sumq;
/* check for quick return */
if (n < 2)
return ((BASE) 0.0);
h = n / 2 + 1;
k = (int64_t)h * (h - 1) / 2;
for (i = 0; i < ni; ++i)
{
left[i] = ni - i + 1;
right[i] = (i <= h) ? ni : ni - (i - h);
/* the n - (i-h) is from the paper; original code had `n' */
}
nl = (int64_t)n * (n + 1) / 2;
nr = (int64_t)n * n;
knew = k + nl;/* = k + (n+1 \over 2) */
/* L200: */
while (!found && nr - nl > ni)
{
j = 0;
/* Truncation to float : try to make sure that the same values are got later (guard bits !) */
for (i = 1; i < ni; ++i)
{
if (left[i] <= right[i])
{
weight[j] = right[i] - left[i] + 1;
jh = left[i] + weight[j] / 2;
work[j] = sorted_data[i * stride] - sorted_data[(ni - jh) * stride];
++j;
}
}
trial = FUNCTION(Qn,whimed)(work, weight, j, a_cand, a_srt, /*iw_cand*/ p);
j = 0;
for (i = ni - 1; i >= 0; --i)
{
while (j < ni && ((double)(sorted_data[i * stride] - sorted_data[(ni - j - 1) * stride])) < trial)
++j;
p[i] = j;
}
j = ni + 1;
for (i = 0; i < ni; ++i)
{
while ((double)(sorted_data[i * stride] - sorted_data[(ni - j + 1) * stride]) > trial)
--j;
q[i] = j;
}
sump = 0;
sumq = 0;
for (i = 0; i < ni; ++i)
{
sump += p[i];
sumq += q[i] - 1;
}
if (knew <= sump)
{
for (i = 0; i < ni; ++i)
right[i] = p[i];
nr = sump;
}
else if (knew > sumq)
{
for (i = 0; i < ni; ++i)
left[i] = q[i];
nl = sumq;
}
else /* sump < knew <= sumq */
{
found = 1;
}
} /* while */
if (found)
{
return trial;
}
else
{
j = 0;
for (i = 1; i < ni; ++i)
{
int jj;
for (jj = left[i]; jj <= right[i]; ++jj)
{
work[j] = sorted_data[i * stride] - sorted_data[(ni - jj) * stride];
j++;
}/* j will be = sum_{i=2}^n (right[i] - left[i] + 1)_{+} */
}
/* return pull(work, j - 1, knew - nl) : */
knew -= (nl + 1); /* -1: 0-indexing */
/* sort work array */
TYPE (gsl_sort) (work, 1, j);
return (work[knew]);
}
}
/*
gsl_stats_Qn_from_sorted_data()
Efficient algorithm for the scale estimator:
Q_n = 2.219 * d_n * { |x_i - x_j|; i<j }_(k)
with:
k = (floor(n/2) + 1 choose 2)
and d_n is a correction factor for finite sample bias
Inputs: sorted_data - sorted array containing the observations
stride - stride
n - length of 'sorted_data'
work - workspace of length 3n of type BASE
work_int - workspace of length 5n of type int
Return: Q_n statistic
*/
double
FUNCTION(gsl_stats,Qn_from_sorted_data) (const BASE sorted_data[],
const size_t stride,
const size_t n,
BASE work[],
int work_int[])
{
const double scale = 2.21914; /* asymptotic consistency for sigma^2 */
double Qn0 = (double) FUNCTION(gsl_stats,Qn0_from_sorted_data)(sorted_data, stride, n, work, work_int);
double dn = 1.0;
double Qn;
/* this correction factor deviates from the original paper Croux and Rousseeuw, 1992, and
* comes from the 'robustbase' R package */
if (n <= 12)
{
if (n == 2) dn = .399356;
else if (n == 3) dn = .99365;
else if (n == 4) dn = .51321;
else if (n == 5) dn = .84401;
else if (n == 6) dn = .61220;
else if (n == 7) dn = .85877;
else if (n == 8) dn = .66993;
else if (n == 9) dn = .87344;
else if (n == 10) dn = .72014;
else if (n == 11) dn = .88906;
else if (n == 12) dn = .75743;
}
else
{
if (n % 2 == 1) /* n odd */
dn = 1.60188 + (-2.1284 - 5.172 / n) / n;
else /* n even */
dn = 3.67561 + (1.9654 + (6.987 - 77.0 / n) / n) / n;
dn = 1.0 / (dn / (double)n + 1.0);
}
Qn = scale * dn * Qn0;
return Qn;
}
/*
Algorithm to compute the weighted high median in O(n) time.
The whimed is defined as the smallest a[j] such that the sum
of the weights of all a[i] <= a[j] is strictly greater than
half of the total weight.
Arguments:
a: double array containing the observations
n: number of observations
w: array of (int/double) weights of the observations.
*/
static BASE
FUNCTION(Qn,whimed)(BASE * a, int * w, int n, BASE * a_cand, BASE * a_srt, int * w_cand)
{
int n2, i, kcand;
/* sum of weights: `int' do overflow when n ~>= 1e5 */
int64_t wleft, wmid, wright, w_tot, wrest;
BASE trial;
w_tot = 0;
for (i = 0; i < n; ++i)
w_tot += w[i];
wrest = 0;
/* REPEAT : */
do
{
for (i = 0; i < n; ++i)
a_srt[i] = a[i];
n2 = n/2; /* =^= n/2 +1 with 0-indexing */
#if 0
rPsort(a_srt, n, n2);
#else
TYPE (gsl_sort) (a_srt, 1, n);
#endif
trial = a_srt[n2];
wleft = 0;
wmid = 0;
wright = 0;
for (i = 0; i < n; ++i)
{
if (a[i] < trial)
wleft += w[i];
else if (a[i] > trial)
wright += w[i];
else
wmid += w[i];
}
/* wleft = sum_{i; a[i] < trial} w[i]
* wmid = sum_{i; a[i] == trial} w[i] at least one 'i' since trial is one a[]!
* wright= sum_{i; a[i] > trial} w[i]
*/
kcand = 0;
if (2 * (wrest + wleft) > w_tot)
{
for (i = 0; i < n; ++i)
{
if (a[i] < trial)
{
a_cand[kcand] = a[i];
w_cand[kcand] = w[i];
++kcand;
}
}
}
else if (2 * (wrest + wleft + wmid) <= w_tot)
{
for (i = 0; i < n; ++i)
{
if (a[i] > trial)
{
a_cand[kcand] = a[i];
w_cand[kcand] = w[i];
++kcand;
}
}
wrest += wleft + wmid;
}
else
{
return trial;
}
n = kcand;
for (i = 0; i < n; ++i)
{
a[i] = a_cand[i];
w[i] = w_cand[i];
}
} while(1);
}
|