File: test_robust.c

package info (click to toggle)
gsl 2.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 26,176 kB
  • sloc: ansic: 255,377; sh: 11,435; makefile: 903; python: 68
file content (267 lines) | stat: -rw-r--r-- 5,863 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/* statistics/test_robust.c
 * 
 * Copyright (C) 2018 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <stdlib.h>
#include <math.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_test.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_statistics.h>
#include <gsl/gsl_sort.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_ieee_utils.h>

int test_robust (void);

/* random vector in [-1,1] */
static int
random_array(const size_t n, double * x, gsl_rng * r)
{
  size_t i;

  for (i = 0; i < n; ++i)
    x[i] = 2.0 * gsl_rng_uniform(r) - 1.0;

  return 0;
}

/* calculate MAD statistic for input vector using slow/naive algorithm */
static double
slow_MAD(const size_t n, const double x[])
{
  double *work = malloc(n * sizeof(double));
  double median, mad;
  size_t i;

  for (i = 0; i < n; ++i)
    work[i] = x[i];

  gsl_sort(work, 1, n);
  median = gsl_stats_median_from_sorted_data(work, 1, n);

  for (i = 0; i < n; ++i)
    work[i] = fabs(x[i] - median);

  gsl_sort(work, 1, n);
  mad = gsl_stats_median_from_sorted_data(work, 1, n);

  free(work);

  return mad;
}

/* calculate S_n statistic for input vector using slow/naive algorithm */
static double
slow_Sn0(const size_t n, const double x[])
{
  double *work1 = malloc(n * sizeof(double));
  double *work2 = malloc(n * sizeof(double));
  double Sn;
  size_t i, j;

  for (i = 0; i < n; ++i)
    {
      for (j = 0; j < n; ++j)
        work1[j] = fabs(x[i] - x[j]);

      /* find himed_j | x_i - x_j | */
      gsl_sort(work1, 1, n);
      work2[i] = work1[n / 2];
    }

  /* find lomed_i { himed_j | x_i - x_j | } */
  gsl_sort(work2, 1, n);
  Sn = work2[(n + 1) / 2 - 1];

  free(work1);
  free(work2);

  return Sn;
}

/* calculate Q_n statistic for input vector using slow/naive algorithm */
static double
slow_Qn0(const size_t n, const double x[])
{
  const size_t wsize = n * (n - 1) / 2;
  const size_t n_2 = n / 2;
  const size_t k = ((n_2 + 1) * n_2) / 2;
  double *work;
  double Qn;
  size_t idx = 0;
  size_t i, j;

  if (n < 2)
    return (0.0);

  work = malloc(wsize * sizeof(double));

  for (i = 0; i < n; ++i)
    {
      for (j = i + 1; j < n; ++j)
        work[idx++] = fabs(x[i] - x[j]);
    }

  gsl_sort(work, 1, idx);
  Qn = work[k - 1];

  free(work);

  return Qn;
}

static int
test_median(const double tol, const size_t n, gsl_rng * r)
{
  double * x = malloc(n * sizeof(double));
  double median1, median2;

  random_array(n, x, r);

  median1 = gsl_stats_median(x, 1, n);

  gsl_sort(x, 1, n);
  median2 = gsl_stats_median_from_sorted_data(x, 1, n);

  gsl_test_rel(median1, median2, tol, "test_median n=%zu", n);

  free(x);

  return 0;
}

static int
test_mad(const double tol, const size_t n, gsl_rng * r)
{
  double * x = malloc(n * sizeof(double));
  double * work = malloc(n * sizeof(double));
  double mad1, mad2;

  random_array(n, x, r);

  mad1 = slow_MAD(n, x);

  gsl_sort(x, 1, n);
  mad2 = gsl_stats_mad0(x, 1, n, work);

  gsl_test_rel(mad1, mad2, tol, "test_mad n=%zu", n);

  free(x);
  free(work);

  return 0;
}

static int
test_Sn(const double tol, const size_t n, gsl_rng * r)
{
  double * x = malloc(n * sizeof(double));
  double * work = malloc(n * sizeof(double));
  double Sn1, Sn2;

  random_array(n, x, r);

  /* compute S_n with slow/naive algorithm */
  Sn1 = slow_Sn0(n, x);

  /* compute S_n with efficient algorithm */
  gsl_sort(x, 1, n);
  Sn2 = gsl_stats_Sn0_from_sorted_data(x, 1, n, work);

  gsl_test_rel(Sn2, Sn1, tol, "test_Sn n=%zu", n);

  free(x);
  free(work);

  return 0;
}

static int
test_Qn(const double tol, const size_t n, gsl_rng * r)
{
  double * x = malloc(n * sizeof(double));
  double * work = malloc(3 * n * sizeof(double));
  int * work_int = malloc(5 * n * sizeof(int));
  double Qn1, Qn2;

  random_array(n, x, r);

  /* compute Q_n with slow/naive algorithm */
  Qn1 = slow_Qn0(n, x);

  /* compute Q_n with efficient algorithm */
  gsl_sort(x, 1, n);
  Qn2 = gsl_stats_Qn0_from_sorted_data(x, 1, n, work, work_int);

  gsl_test_rel(Qn2, Qn1, tol, "test_Qn n=%zu", n);

  free(x);
  free(work);
  free(work_int);

  return 0;
}

int
test_robust (void)
{
  const double tol = 1.0e-12;
  gsl_rng * r = gsl_rng_alloc(gsl_rng_default);

  test_median(GSL_DBL_EPSILON, 1, r);
  test_median(GSL_DBL_EPSILON, 2, r);
  test_median(GSL_DBL_EPSILON, 3, r);
  test_median(GSL_DBL_EPSILON, 100, r);
  test_median(GSL_DBL_EPSILON, 101, r);
  test_median(GSL_DBL_EPSILON, 500, r);
  test_median(GSL_DBL_EPSILON, 501, r);

  test_mad(GSL_DBL_EPSILON, 1, r);
  test_mad(GSL_DBL_EPSILON, 2, r);
  test_mad(GSL_DBL_EPSILON, 3, r);
  test_mad(GSL_DBL_EPSILON, 100, r);
  test_mad(GSL_DBL_EPSILON, 101, r);
  test_mad(GSL_DBL_EPSILON, 500, r);
  test_mad(GSL_DBL_EPSILON, 501, r);

  test_Sn(tol, 1, r);
  test_Sn(tol, 2, r);
  test_Sn(tol, 3, r);
  test_Sn(tol, 100, r);
  test_Sn(tol, 101, r);
  test_Sn(tol, 500, r);
  test_Sn(tol, 501, r);

  test_Qn(tol, 1, r);
  test_Qn(tol, 2, r);
  test_Qn(tol, 3, r);
  test_Qn(tol, 4, r);
  test_Qn(tol, 5, r);
  test_Qn(tol, 100, r);
  test_Qn(tol, 101, r);
  test_Qn(tol, 500, r);
  test_Qn(tol, 501, r);

  gsl_rng_free(r);

  return 0;
}