1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/* dht/test_dht.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman
*/
#include <config.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <gsl/gsl_ieee_utils.h>
#include <gsl/gsl_test.h>
#include <gsl/gsl_dht.h>
/* Test exact small transform.
*/
int
test_dht_exact(void)
{
int stat = 0;
double f_in[3] = { 1.0, 2.0, 3.0 };
double f_out[3];
gsl_dht * t = gsl_dht_new(3, 1.0, 1.0);
gsl_dht_apply(t, f_in, f_out);
/* Check values. */
if(fabs( f_out[0]-( 0.375254649407520))/0.375254649407520 > 1.0e-14) stat++;
if(fabs( f_out[1]-(-0.133507872695560))/0.133507872695560 > 1.0e-14) stat++;
if(fabs( f_out[2]-( 0.044679925143840))/0.044679925143840 > 1.0e-14) stat++;
/* Check inverse.
* We have to adjust the normalization
* so we can use the same precalculated transform.
*/
gsl_dht_apply(t, f_out, f_in);
f_in[0] *= 13.323691936314223*13.323691936314223; /* jzero[1,4]^2 */
f_in[1] *= 13.323691936314223*13.323691936314223;
f_in[2] *= 13.323691936314223*13.323691936314223;
/* The loss of precision on the inverse
* is a little surprising. However, this
* thing is quite tricky since the band-limited
* function represented by the samples {1,2,3}
* need not be very nice. Like in any spectral
* application, you really have to have some
* a-priori knowledge of the underlying function.
*/
if(fabs( f_in[0]-1.0)/1.0 > 2.0e-05) stat++;
if(fabs( f_in[1]-2.0)/2.0 > 2.0e-05) stat++;
if(fabs( f_in[2]-3.0)/3.0 > 2.0e-05) stat++;
gsl_dht_free(t);
return stat;
}
/* Test the transform
* Integrate[x J_0(a x) / (x^2 + 1), {x,0,Inf}] = K_0(a)
*/
int
test_dht_simple(void)
{
int stat = 0;
int n;
double f_in[128];
double f_out[128];
gsl_dht * t = gsl_dht_new(128, 0.0, 100.0);
for(n=0; n<128; n++) {
const double x = gsl_dht_x_sample(t, n);
f_in[n] = 1.0/(1.0+x*x);
}
gsl_dht_apply(t, f_in, f_out);
/* This is a difficult transform to calculate this way,
* since it does not satisfy the boundary condition and
* it dies quite slowly. So it is not meaningful to
* compare this to high accuracy. We only check
* that it seems to be working.
*/
if(fabs( f_out[0]-4.00)/4.00 > 0.02) stat++;
if(fabs( f_out[5]-1.84)/1.84 > 0.02) stat++;
if(fabs(f_out[10]-1.27)/1.27 > 0.02) stat++;
if(fabs(f_out[35]-0.352)/0.352 > 0.02) stat++;
if(fabs(f_out[100]-0.0237)/0.0237 > 0.02) stat++;
gsl_dht_free(t);
return stat;
}
/* Test the transform
* Integrate[ x exp(-x) J_1(a x), {x,0,Inf}] = a F(3/2, 2; 2; -a^2)
*/
int
test_dht_exp1(void)
{
int stat = 0;
int n;
double f_in[128];
double f_out[128];
gsl_dht * t = gsl_dht_new(128, 1.0, 20.0);
for(n=0; n<128; n++) {
const double x = gsl_dht_x_sample(t, n);
f_in[n] = exp(-x);
}
gsl_dht_apply(t, f_in, f_out);
/* Spot check.
* Note that the systematic errors in the calculation
* are quite large, so it is meaningless to compare
* to a high accuracy.
*/
if(fabs( f_out[0]-0.181)/0.181 > 0.02) stat++;
if(fabs( f_out[5]-0.357)/0.357 > 0.02) stat++;
if(fabs(f_out[10]-0.211)/0.211 > 0.02) stat++;
if(fabs(f_out[35]-0.0289)/0.0289 > 0.02) stat++;
if(fabs(f_out[100]-0.00221)/0.00211 > 0.02) stat++;
gsl_dht_free(t);
return stat;
}
/* Test the transform
* Integrate[ x^2 (1-x^2) J_1(a x), {x,0,1}] = 2/a^2 J_3(a)
*/
int
test_dht_poly1(void)
{
int stat = 0;
int n;
double f_in[128];
double f_out[128];
gsl_dht * t = gsl_dht_new(128, 1.0, 1.0);
for(n=0; n<128; n++) {
const double x = gsl_dht_x_sample(t, n);
f_in[n] = x * (1.0 - x*x);
}
gsl_dht_apply(t, f_in, f_out);
/* Spot check. This function satisfies the boundary condition,
* so the accuracy should be ok.
*/
if(fabs( f_out[0]-0.057274214)/0.057274214 > 1.0e-07) stat++;
if(fabs( f_out[5]-(-0.000190850))/0.000190850 > 1.0e-05) stat++;
if(fabs(f_out[10]-0.000024342)/0.000024342 > 1.0e-04) stat++;
if(fabs(f_out[35]-(-4.04e-07))/4.04e-07 > 1.0e-03) stat++;
if(fabs(f_out[100]-1.0e-08)/1.0e-08 > 0.25) stat++;
gsl_dht_free(t);
return stat;
}
int main()
{
gsl_ieee_env_setup ();
gsl_test( test_dht_exact(), "Small Exact DHT");
gsl_test( test_dht_simple(), "Simple DHT");
gsl_test( test_dht_exp1(), "Exp J1 DHT");
gsl_test( test_dht_poly1(), "Poly J1 DHT");
exit (gsl_test_summary());
}
|