File: bspline_gram.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (140 lines) | stat: -rw-r--r-- 4,887 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_bspline.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

int
main (int argc, char * argv[])
{
  const size_t n = 500;                                     /* number of data points to fit */
  const size_t k = 4;                                       /* spline order */
  const double a = -1.5;                                    /* data interval [a,b] */
  const double b = 1.5;
  const double sigma = 0.02;                                /* noise */
  const double lambda_sq = 0.1;                             /* regularization parameter */
  gsl_bspline_workspace *work = gsl_bspline_alloc(k, 25);   /* 25 breakpoints */
  const size_t p = gsl_bspline_ncontrol(work);              /* number of control points */
  gsl_vector *c = gsl_vector_alloc(p);                      /* control points for unregularized model */
  gsl_vector *creg = gsl_vector_alloc(p);                   /* control points for regularized model */
  gsl_vector *x = gsl_vector_alloc(n);                      /* x data */
  gsl_vector *y = gsl_vector_alloc(n);                      /* y data */
  gsl_vector *w = gsl_vector_alloc(n);                      /* data weights */
  gsl_matrix *XTX = gsl_matrix_alloc(p, k);                 /* normal equations matrix */
  gsl_vector *XTy = gsl_vector_alloc(p);                    /* normal equations rhs */
  gsl_matrix *cov = gsl_matrix_alloc(p, p);                 /* covariance matrix */
  gsl_matrix *cov_reg = gsl_matrix_alloc(p, p);             /* covariance matrix for regularized model */
  gsl_matrix *G = gsl_matrix_alloc(p, k);                   /* regularization matrix */
  double reg_a = -1.0;                                      /* regularization interval [reg_a,reg_b] */
  double reg_b = -1.0;
  int reg_interval = 0;                                     /* apply regularization on smaller interval */
  size_t i;
  gsl_rng *r;

  if (argc > 2)
    {
      reg_a = atof(argv[1]);
      reg_b = atof(argv[2]);
      reg_interval = 1;
    }

  gsl_rng_env_setup();
  r = gsl_rng_alloc(gsl_rng_default);

  /* this is the data to be fitted */
  i = 0;
  while (i < n)
    {
      double ui = gsl_rng_uniform(r);
      double xi = (b - a) * ui + a;
      double yi, dyi;

      /* data gaps between [-1.1,-0.7] and [0.1,0.5] */
      if ((xi >= -1.1 && xi <= -0.7) || (xi >= 0.1 && xi <= 0.55))
        continue;

      dyi = gsl_ran_gaussian(r, sigma);
      yi = exp(-xi*xi) + dyi;

      gsl_vector_set(x, i, xi);
      gsl_vector_set(y, i, yi);
      gsl_vector_set(w, i, 1.0 / (sigma * sigma));

      printf("%f %f\n", xi, yi);

      ++i;
    }

  printf("\n\n");

  /* use uniform breakpoints on [a, b] */
  gsl_bspline_init_uniform(a, b, work);

  gsl_bspline_lsnormal(x, y, w, XTy, XTX, work); /* form normal equations matrix */
  gsl_linalg_cholesky_band_decomp(XTX);          /* banded Cholesky decomposition */
  gsl_linalg_cholesky_band_solve(XTX, XTy, c);   /* solve for unregularized solution */
  gsl_bspline_covariance(XTX, cov, work);        /* compute covariance matrix */

  /* compute regularization matrix */
  if (reg_interval)
    gsl_bspline_gram_interval(reg_a, reg_b, 2, G, work);
  else
    gsl_bspline_gram(2, G, work);

  /* multiply by lambda^2 */
  gsl_matrix_scale(G, lambda_sq);

  gsl_bspline_lsnormal(x, y, w, XTy, XTX, work);  /* form normal equations matrix */
  gsl_matrix_add(XTX, G);                         /* add regularization term */
  gsl_linalg_cholesky_band_decomp(XTX);           /* banded Cholesky decomposition */
  gsl_linalg_cholesky_band_solve(XTX, XTy, creg); /* solve for regularized solution */
  gsl_bspline_covariance(XTX, cov_reg, work);     /* compute covariance matrix */

  /* output the spline curves */
  {
    double xi;

    for (xi = a; xi <= b; xi += 0.01)
      {
        double result_unreg, result_reg;
        double err_unreg, err_reg;

        /* compute unregularized spline value and error at xi */
        gsl_bspline_calc(xi, c, &result_unreg, work);
        gsl_bspline_err(xi, 0, cov, &err_unreg, work);

        /* compute regularized spline value and error at xi */
        gsl_bspline_calc(xi, creg, &result_reg, work);
        gsl_bspline_err(xi, 0, cov_reg, &err_reg, work);

        printf("%f %e %e %e %e %e\n",
               xi,
               exp(-xi*xi),
               result_unreg,
               err_unreg,
               result_reg,
               err_reg);
      }
  }

  gsl_rng_free(r);
  gsl_vector_free(x);
  gsl_vector_free(y);
  gsl_vector_free(w);
  gsl_vector_free(c);
  gsl_vector_free(creg);
  gsl_bspline_free(work);
  gsl_matrix_free(XTX);
  gsl_vector_free(XTy);
  gsl_matrix_free(cov);
  gsl_matrix_free(cov_reg);
  gsl_matrix_free(G);

  return 0;
}