1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
|
/* eigen/francis.c
*
* Copyright (C) 2006, 2007 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <math.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_vector_complex.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>
/*
* This module computes the eigenvalues of a real upper hessenberg
* matrix, using the classical double shift Francis QR algorithm.
* It will also optionally compute the full Schur form and matrix of
* Schur vectors.
*
* See Golub & Van Loan, "Matrix Computations" (3rd ed),
* algorithm 7.5.2
*/
/* exceptional shift coefficients - these values are from LAPACK DLAHQR */
#define GSL_FRANCIS_COEFF1 (0.75)
#define GSL_FRANCIS_COEFF2 (-0.4375)
static inline void francis_schur_decomp(gsl_matrix * H,
gsl_vector_complex * eval,
gsl_eigen_francis_workspace * w);
static inline size_t francis_search_subdiag_small_elements(gsl_matrix * A);
static inline int francis_qrstep(gsl_matrix * H,
gsl_eigen_francis_workspace * w);
static inline void francis_schur_standardize(gsl_matrix *A,
gsl_complex *eval1,
gsl_complex *eval2,
gsl_eigen_francis_workspace *w);
static inline size_t francis_get_submatrix(gsl_matrix *A, gsl_matrix *B);
static void francis_standard_form(gsl_matrix *A, double *cs, double *sn);
/*
gsl_eigen_francis_alloc()
Allocate a workspace for solving the nonsymmetric eigenvalue problem.
The size of this workspace is O(1)
Inputs: none
Return: pointer to workspace
*/
gsl_eigen_francis_workspace *
gsl_eigen_francis_alloc(void)
{
gsl_eigen_francis_workspace *w;
w = (gsl_eigen_francis_workspace *)
calloc (1, sizeof (gsl_eigen_francis_workspace));
if (w == 0)
{
GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM);
}
/* these are filled in later */
w->size = 0;
w->max_iterations = 0;
w->n_iter = 0;
w->n_evals = 0;
w->compute_t = 0;
w->Z = NULL;
w->H = NULL;
return (w);
} /* gsl_eigen_francis_alloc() */
/*
gsl_eigen_francis_free()
Free francis workspace w
*/
void
gsl_eigen_francis_free (gsl_eigen_francis_workspace *w)
{
RETURN_IF_NULL (w);
free(w);
} /* gsl_eigen_francis_free() */
/*
gsl_eigen_francis_T()
Called when we want to compute the Schur form T, or no longer
compute the Schur form T
Inputs: compute_t - 1 to compute T, 0 to not compute T
w - francis workspace
*/
void
gsl_eigen_francis_T (const int compute_t, gsl_eigen_francis_workspace *w)
{
w->compute_t = compute_t;
}
/*
gsl_eigen_francis()
Solve the nonsymmetric eigenvalue problem
H x = \lambda x
for the eigenvalues \lambda using algorithm 7.5.2 of
Golub & Van Loan, "Matrix Computations" (3rd ed)
Inputs: H - upper hessenberg matrix
eval - where to store eigenvalues
w - workspace
Return: success or error - if error code is returned,
then the QR procedure did not converge in the
allowed number of iterations. In the event of non-
convergence, the number of eigenvalues found will
still be stored in the beginning of eval,
Notes: On output, the diagonal of H contains 1-by-1 or 2-by-2
blocks containing the eigenvalues. If T is desired,
H will contain the full Schur form on output.
*/
int
gsl_eigen_francis (gsl_matrix * H, gsl_vector_complex * eval,
gsl_eigen_francis_workspace * w)
{
/* check matrix and vector sizes */
if (H->size1 != H->size2)
{
GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR);
}
else if (eval->size != H->size1)
{
GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN);
}
else
{
const size_t N = H->size1;
int j;
/*
* Set internal parameters which depend on matrix size.
* The Francis solver can be called with any size matrix
* since the workspace does not depend on N.
* Furthermore, multishift solvers which call the Francis
* solver may need to call it with different sized matrices
*/
w->size = N;
w->max_iterations = 30 * N;
/*
* save a pointer to original matrix since francis_schur_decomp
* is recursive
*/
w->H = H;
w->n_iter = 0;
w->n_evals = 0;
/*
* zero out the first two subdiagonals (below the main subdiagonal)
* needed as scratch space by the QR sweep routine
*/
for (j = 0; j < (int) N - 3; ++j)
{
gsl_matrix_set(H, (size_t) j + 2, (size_t) j, 0.0);
gsl_matrix_set(H, (size_t) j + 3, (size_t) j, 0.0);
}
if (N > 2)
gsl_matrix_set(H, N - 1, N - 3, 0.0);
/*
* compute Schur decomposition of H and store eigenvalues
* into eval
*/
francis_schur_decomp(H, eval, w);
if (w->n_evals != N)
{
GSL_ERROR ("maximum iterations reached without finding all eigenvalues", GSL_EMAXITER);
}
return GSL_SUCCESS;
}
} /* gsl_eigen_francis() */
/*
gsl_eigen_francis_Z()
Solve the nonsymmetric eigenvalue problem for a Hessenberg
matrix
H x = \lambda x
for the eigenvalues \lambda using the Francis double-shift
method.
Here we compute the real Schur form
T = Q^t H Q
with the diagonal blocks of T giving us the eigenvalues.
Q is the matrix of Schur vectors.
Originally, H was obtained from a general nonsymmetric matrix
A via a transformation
H = U^t A U
so that
T = (UQ)^t A (UQ) = Z^t A Z
Z is the matrix of Schur vectors computed by this algorithm
Inputs: H - upper hessenberg matrix
eval - where to store eigenvalues
Z - where to store Schur vectors
w - workspace
Notes: 1) If T is computed, it is stored in H on output. Otherwise,
the diagonal of H will contain 1-by-1 and 2-by-2 blocks
containing the eigenvalues.
2) The matrix Z must be initialized to the Hessenberg
similarity matrix U. Or if you want the eigenvalues
of H, initialize Z to the identity matrix.
*/
int
gsl_eigen_francis_Z (gsl_matrix * H, gsl_vector_complex * eval,
gsl_matrix * Z, gsl_eigen_francis_workspace * w)
{
int s;
/* set internal Z pointer so we know to accumulate transformations */
w->Z = Z;
s = gsl_eigen_francis(H, eval, w);
w->Z = NULL;
return s;
} /* gsl_eigen_francis_Z() */
/********************************************
* INTERNAL ROUTINES *
********************************************/
/*
francis_schur_decomp()
Compute the Schur decomposition of the matrix H
Inputs: H - hessenberg matrix
eval - where to store eigenvalues
w - workspace
Return: none
*/
static inline void
francis_schur_decomp(gsl_matrix * H, gsl_vector_complex * eval,
gsl_eigen_francis_workspace * w)
{
gsl_matrix_view m; /* active matrix we are working on */
size_t N; /* size of matrix */
size_t q; /* index of small subdiagonal element */
gsl_complex lambda1, /* eigenvalues */
lambda2;
N = H->size1;
m = gsl_matrix_submatrix(H, 0, 0, N, N);
while ((N > 2) && ((w->n_iter)++ < w->max_iterations))
{
q = francis_search_subdiag_small_elements(&m.matrix);
if (q == 0)
{
/*
* no small subdiagonal element found - perform a QR
* sweep on the active reduced hessenberg matrix
*/
francis_qrstep(&m.matrix, w);
continue;
}
/*
* a small subdiagonal element was found - one or two eigenvalues
* have converged or the matrix has split into two smaller matrices
*/
if (q == (N - 1))
{
/*
* the last subdiagonal element of the matrix is 0 -
* m_{NN} is a real eigenvalue
*/
GSL_SET_COMPLEX(&lambda1,
gsl_matrix_get(&m.matrix, q, q), 0.0);
gsl_vector_complex_set(eval, w->n_evals, lambda1);
w->n_evals += 1;
w->n_iter = 0;
--N;
m = gsl_matrix_submatrix(&m.matrix, 0, 0, N, N);
}
else if (q == (N - 2))
{
gsl_matrix_view v;
/*
* The bottom right 2-by-2 block of m is an eigenvalue
* system
*/
v = gsl_matrix_submatrix(&m.matrix, q, q, 2, 2);
francis_schur_standardize(&v.matrix, &lambda1, &lambda2, w);
gsl_vector_complex_set(eval, w->n_evals, lambda1);
gsl_vector_complex_set(eval, w->n_evals + 1, lambda2);
w->n_evals += 2;
w->n_iter = 0;
N -= 2;
m = gsl_matrix_submatrix(&m.matrix, 0, 0, N, N);
}
else if (q == 1)
{
/* the first matrix element is an eigenvalue */
GSL_SET_COMPLEX(&lambda1,
gsl_matrix_get(&m.matrix, 0, 0), 0.0);
gsl_vector_complex_set(eval, w->n_evals, lambda1);
w->n_evals += 1;
w->n_iter = 0;
--N;
m = gsl_matrix_submatrix(&m.matrix, 1, 1, N, N);
}
else if (q == 2)
{
gsl_matrix_view v;
/* the upper left 2-by-2 block is an eigenvalue system */
v = gsl_matrix_submatrix(&m.matrix, 0, 0, 2, 2);
francis_schur_standardize(&v.matrix, &lambda1, &lambda2, w);
gsl_vector_complex_set(eval, w->n_evals, lambda1);
gsl_vector_complex_set(eval, w->n_evals + 1, lambda2);
w->n_evals += 2;
w->n_iter = 0;
N -= 2;
m = gsl_matrix_submatrix(&m.matrix, 2, 2, N, N);
}
else
{
gsl_matrix_view v;
/*
* There is a zero element on the subdiagonal somewhere
* in the middle of the matrix - we can now operate
* separately on the two submatrices split by this
* element. q is the row index of the zero element.
*/
/* operate on lower right (N - q)-by-(N - q) block first */
v = gsl_matrix_submatrix(&m.matrix, q, q, N - q, N - q);
francis_schur_decomp(&v.matrix, eval, w);
/* operate on upper left q-by-q block */
v = gsl_matrix_submatrix(&m.matrix, 0, 0, q, q);
francis_schur_decomp(&v.matrix, eval, w);
N = 0;
}
}
/* handle special cases of N = 1 or 2 */
if (N == 1)
{
GSL_SET_COMPLEX(&lambda1, gsl_matrix_get(&m.matrix, 0, 0), 0.0);
gsl_vector_complex_set(eval, w->n_evals, lambda1);
w->n_evals += 1;
w->n_iter = 0;
}
else if (N == 2)
{
francis_schur_standardize(&m.matrix, &lambda1, &lambda2, w);
gsl_vector_complex_set(eval, w->n_evals, lambda1);
gsl_vector_complex_set(eval, w->n_evals + 1, lambda2);
w->n_evals += 2;
w->n_iter = 0;
}
} /* francis_schur_decomp() */
/*
francis_qrstep()
Perform a Francis QR step.
See Golub & Van Loan, "Matrix Computations" (3rd ed),
algorithm 7.5.1
Inputs: H - upper Hessenberg matrix
w - workspace
Notes: The matrix H must be "reduced", ie: have no tiny subdiagonal
elements. When computing the first householder reflection,
we divide by H_{21} so it is necessary that this element
is not zero. When a subdiagonal element becomes negligible,
the calling function should call this routine with the
submatrices split by that element, so that we don't divide
by zeros.
*/
static inline int
francis_qrstep(gsl_matrix * H, gsl_eigen_francis_workspace * w)
{
const size_t N = H->size1;
size_t i; /* looping */
gsl_matrix_view m;
double tau_i; /* householder coefficient */
double dat[3]; /* householder vector */
double scale; /* scale factor to avoid overflow */
gsl_vector_view v2, v3;
size_t q, r;
size_t top = 0; /* location of H in original matrix */
double s,
disc;
double h_nn, /* H(n,n) */
h_nm1nm1, /* H(n-1,n-1) */
h_cross, /* H(n,n-1) * H(n-1,n) */
h_tmp1,
h_tmp2;
v2 = gsl_vector_view_array(dat, 2);
v3 = gsl_vector_view_array(dat, 3);
if ((w->n_iter % 10) == 0)
{
/*
* exceptional shifts: we have gone 10 iterations
* without finding a new eigenvalue, try a new choice of shifts.
* See LAPACK routine DLAHQR
*/
s = fabs(gsl_matrix_get(H, N - 1, N - 2)) +
fabs(gsl_matrix_get(H, N - 2, N - 3));
h_nn = gsl_matrix_get(H, N - 1, N - 1) + GSL_FRANCIS_COEFF1 * s;
h_nm1nm1 = h_nn;
h_cross = GSL_FRANCIS_COEFF2 * s * s;
}
else
{
/*
* normal shifts - compute Rayleigh quotient and use
* Wilkinson shift if possible
*/
h_nn = gsl_matrix_get(H, N - 1, N - 1);
h_nm1nm1 = gsl_matrix_get(H, N - 2, N - 2);
h_cross = gsl_matrix_get(H, N - 1, N - 2) *
gsl_matrix_get(H, N - 2, N - 1);
disc = 0.5 * (h_nm1nm1 - h_nn);
disc = disc * disc + h_cross;
if (disc > 0.0)
{
double ave;
/* real roots - use Wilkinson's shift twice */
disc = sqrt(disc);
ave = 0.5 * (h_nm1nm1 + h_nn);
if (fabs(h_nm1nm1) - fabs(h_nn) > 0.0)
{
h_nm1nm1 = h_nm1nm1 * h_nn - h_cross;
h_nn = h_nm1nm1 / (disc * GSL_SIGN(ave) + ave);
}
else
{
h_nn = disc * GSL_SIGN(ave) + ave;
}
h_nm1nm1 = h_nn;
h_cross = 0.0;
}
}
h_tmp1 = h_nm1nm1 - gsl_matrix_get(H, 0, 0);
h_tmp2 = h_nn - gsl_matrix_get(H, 0, 0);
/*
* These formulas are equivalent to those in Golub & Van Loan
* for the normal shift case - the terms have been rearranged
* to reduce possible roundoff error when subdiagonal elements
* are small
*/
dat[0] = (h_tmp1*h_tmp2 - h_cross) / gsl_matrix_get(H, 1, 0) +
gsl_matrix_get(H, 0, 1);
dat[1] = gsl_matrix_get(H, 1, 1) - gsl_matrix_get(H, 0, 0) - h_tmp1 -
h_tmp2;
dat[2] = gsl_matrix_get(H, 2, 1);
scale = fabs(dat[0]) + fabs(dat[1]) + fabs(dat[2]);
if (scale != 0.0)
{
/* scale to prevent overflow or underflow */
dat[0] /= scale;
dat[1] /= scale;
dat[2] /= scale;
}
if (w->Z || w->compute_t)
{
/*
* get absolute indices of this (sub)matrix relative to the
* original Hessenberg matrix
*/
top = francis_get_submatrix(w->H, H);
}
for (i = 0; i < N - 2; ++i)
{
tau_i = gsl_linalg_householder_transform(&v3.vector);
if (tau_i != 0.0)
{
/* q = max(1, i - 1) */
q = (1 > ((int)i - 1)) ? 0 : (i - 1);
/* r = min(i + 3, N - 1) */
r = ((i + 3) < (N - 1)) ? (i + 3) : (N - 1);
if (w->compute_t)
{
/*
* We are computing the Schur form T, so we
* need to transform the whole matrix H
*
* H -> P_k^t H P_k
*
* where P_k is the current Householder matrix
*/
/* apply left householder matrix (I - tau_i v v') to H */
m = gsl_matrix_submatrix(w->H,
top + i,
top + q,
3,
w->size - top - q);
gsl_linalg_householder_hm(tau_i, &v3.vector, &m.matrix);
/* apply right householder matrix (I - tau_i v v') to H */
m = gsl_matrix_submatrix(w->H,
0,
top + i,
top + r + 1,
3);
gsl_linalg_householder_mh(tau_i, &v3.vector, &m.matrix);
}
else
{
/*
* We are not computing the Schur form T, so we
* only need to transform the active block
*/
/* apply left householder matrix (I - tau_i v v') to H */
m = gsl_matrix_submatrix(H, i, q, 3, N - q);
gsl_linalg_householder_hm(tau_i, &v3.vector, &m.matrix);
/* apply right householder matrix (I - tau_i v v') to H */
m = gsl_matrix_submatrix(H, 0, i, r + 1, 3);
gsl_linalg_householder_mh(tau_i, &v3.vector, &m.matrix);
}
if (w->Z)
{
/* accumulate the similarity transformation into Z */
m = gsl_matrix_submatrix(w->Z, 0, top + i, w->size, 3);
gsl_linalg_householder_mh(tau_i, &v3.vector, &m.matrix);
}
} /* if (tau_i != 0.0) */
dat[0] = gsl_matrix_get(H, i + 1, i);
dat[1] = gsl_matrix_get(H, i + 2, i);
if (i < (N - 3))
{
dat[2] = gsl_matrix_get(H, i + 3, i);
}
scale = fabs(dat[0]) + fabs(dat[1]) + fabs(dat[2]);
if (scale != 0.0)
{
/* scale to prevent overflow or underflow */
dat[0] /= scale;
dat[1] /= scale;
dat[2] /= scale;
}
} /* for (i = 0; i < N - 2; ++i) */
scale = fabs(dat[0]) + fabs(dat[1]);
if (scale != 0.0)
{
/* scale to prevent overflow or underflow */
dat[0] /= scale;
dat[1] /= scale;
}
tau_i = gsl_linalg_householder_transform(&v2.vector);
if (w->compute_t)
{
m = gsl_matrix_submatrix(w->H,
top + N - 2,
top + N - 3,
2,
w->size - top - N + 3);
gsl_linalg_householder_hm(tau_i, &v2.vector, &m.matrix);
m = gsl_matrix_submatrix(w->H,
0,
top + N - 2,
top + N,
2);
gsl_linalg_householder_mh(tau_i, &v2.vector, &m.matrix);
}
else
{
m = gsl_matrix_submatrix(H, N - 2, N - 3, 2, 3);
gsl_linalg_householder_hm(tau_i, &v2.vector, &m.matrix);
m = gsl_matrix_submatrix(H, 0, N - 2, N, 2);
gsl_linalg_householder_mh(tau_i, &v2.vector, &m.matrix);
}
if (w->Z)
{
/* accumulate transformation into Z */
m = gsl_matrix_submatrix(w->Z, 0, top + N - 2, w->size, 2);
gsl_linalg_householder_mh(tau_i, &v2.vector, &m.matrix);
}
return GSL_SUCCESS;
} /* francis_qrstep() */
/*
francis_search_subdiag_small_elements()
Search for a small subdiagonal element starting from the bottom
of a matrix A. A small element is one that satisfies:
|A_{i,i-1}| <= eps * (|A_{i,i}| + |A_{i-1,i-1}|)
Inputs: A - matrix (must be at least 3-by-3)
Return: row index of small subdiagonal element or 0 if not found
Notes: the first small element that is found (starting from bottom)
is set to zero
*/
static inline size_t
francis_search_subdiag_small_elements(gsl_matrix * A)
{
const size_t N = A->size1;
size_t i;
for (i = N - 1; i > 0; --i)
{
double sel = gsl_matrix_get(A, i, i - 1);
double del = gsl_matrix_get(A, i, i);
double dpel = gsl_matrix_get(A, i - 1, i - 1);
if ((sel == 0.0) ||
(fabs(sel) < GSL_DBL_EPSILON * (fabs(del) + fabs(dpel))))
{
gsl_matrix_set(A, i, i - 1, 0.0);
return (i);
}
}
return (0);
} /* francis_search_subdiag_small_elements() */
/*
francis_schur_standardize()
Convert a 2-by-2 diagonal block in the Schur form to standard form
and update the rest of T and Z matrices if required.
Inputs: A - 2-by-2 matrix
eval1 - where to store eigenvalue 1
eval2 - where to store eigenvalue 2
w - francis workspace
*/
static inline void
francis_schur_standardize(gsl_matrix *A, gsl_complex *eval1,
gsl_complex *eval2,
gsl_eigen_francis_workspace *w)
{
const size_t N = w->size;
double cs, sn;
size_t top;
/*
* figure out where the submatrix A resides in the
* original matrix H
*/
top = francis_get_submatrix(w->H, A);
/* convert 2-by-2 block to standard form */
francis_standard_form(A, &cs, &sn);
/* set eigenvalues */
GSL_SET_REAL(eval1, gsl_matrix_get(A, 0, 0));
GSL_SET_REAL(eval2, gsl_matrix_get(A, 1, 1));
if (gsl_matrix_get(A, 1, 0) == 0.0)
{
GSL_SET_IMAG(eval1, 0.0);
GSL_SET_IMAG(eval2, 0.0);
}
else
{
double tmp = sqrt(fabs(gsl_matrix_get(A, 0, 1)) *
fabs(gsl_matrix_get(A, 1, 0)));
GSL_SET_IMAG(eval1, tmp);
GSL_SET_IMAG(eval2, -tmp);
}
if (w->compute_t)
{
gsl_vector_view xv, yv;
/*
* The above call to francis_standard_form transformed a 2-by-2 block
* of T into upper triangular form via the transformation
*
* U = [ CS -SN ]
* [ SN CS ]
*
* The original matrix T was
*
* T = [ T_{11} | T_{12} | T_{13} ]
* [ 0* | A | T_{23} ]
* [ 0 | 0* | T_{33} ]
*
* where 0* indicates all zeros except for possibly
* one subdiagonal element next to A.
*
* After francis_standard_form, T looks like this:
*
* T = [ T_{11} | T_{12} | T_{13} ]
* [ 0* | U^t A U | T_{23} ]
* [ 0 | 0* | T_{33} ]
*
* since only the 2-by-2 block of A was changed. However,
* in order to be able to back transform T at the end,
* we need to apply the U transformation to the rest
* of the matrix T since there is no way to apply a
* similarity transformation to T and change only the
* middle 2-by-2 block. In other words, let
*
* M = [ I 0 0 ]
* [ 0 U 0 ]
* [ 0 0 I ]
*
* and compute
*
* M^t T M = [ T_{11} | T_{12} U | T_{13} ]
* [ U^t 0* | U^t A U | U^t T_{23} ]
* [ 0 | 0* U | T_{33} ]
*
* So basically we need to apply the transformation U
* to the i x 2 matrix T_{12} and the 2 x (n - i + 2)
* matrix T_{23}, where i is the index of the top of A
* in T.
*
* The BLAS routine drot() is suited for this.
*/
if (top < (N - 2))
{
/* transform the 2 rows of T_{23} */
xv = gsl_matrix_subrow(w->H, top, top + 2, N - top - 2);
yv = gsl_matrix_subrow(w->H, top + 1, top + 2, N - top - 2);
gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);
}
if (top > 0)
{
/* transform the 2 columns of T_{12} */
xv = gsl_matrix_subcolumn(w->H, top, 0, top);
yv = gsl_matrix_subcolumn(w->H, top + 1, 0, top);
gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);
}
} /* if (w->compute_t) */
if (w->Z)
{
gsl_vector_view xv, yv;
/*
* Accumulate the transformation in Z. Here, Z -> Z * M
*
* So:
*
* Z -> [ Z_{11} | Z_{12} U | Z_{13} ]
* [ Z_{21} | Z_{22} U | Z_{23} ]
* [ Z_{31} | Z_{32} U | Z_{33} ]
*
* So we just need to apply drot() to the 2 columns
* starting at index 'top'
*/
xv = gsl_matrix_column(w->Z, top);
yv = gsl_matrix_column(w->Z, top + 1);
gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);
} /* if (w->Z) */
} /* francis_schur_standardize() */
/*
francis_get_submatrix()
B is a submatrix of A. The goal of this function is to
compute the indices in A of where the matrix B resides
*/
static inline size_t
francis_get_submatrix(gsl_matrix *A, gsl_matrix *B)
{
size_t diff;
double ratio;
size_t top;
diff = (size_t) (B->data - A->data);
ratio = (double)diff / ((double) (A->tda + 1));
top = (size_t) floor(ratio);
return top;
} /* francis_get_submatrix() */
/*
francis_standard_form()
Compute the Schur factorization of a real 2-by-2 matrix in
standard form:
[ A B ] = [ CS -SN ] [ T11 T12 ] [ CS SN ]
[ C D ] [ SN CS ] [ T21 T22 ] [-SN CS ]
where either:
1) T21 = 0 so that T11 and T22 are real eigenvalues of the matrix, or
2) T11 = T22 and T21*T12 < 0, so that T11 +/- sqrt(|T21*T12|) are
complex conjugate eigenvalues
Inputs: A - 2-by-2 matrix
cs - where to store cosine parameter of rotation matrix
sn - where to store sine parameter of rotation matrix
Notes: 1) based on LAPACK routine DLANV2
2) On output, A is modified to contain the matrix in standard form
*/
static void
francis_standard_form(gsl_matrix *A, double *cs, double *sn)
{
double a, b, c, d; /* input matrix values */
double tmp;
double p, z;
double bcmax, bcmis, scale;
double tau, sigma;
double cs1, sn1;
double aa, bb, cc, dd;
double sab, sac;
a = gsl_matrix_get(A, 0, 0);
b = gsl_matrix_get(A, 0, 1);
c = gsl_matrix_get(A, 1, 0);
d = gsl_matrix_get(A, 1, 1);
if (c == 0.0)
{
/*
* matrix is already upper triangular - set rotation matrix
* to the identity
*/
*cs = 1.0;
*sn = 0.0;
}
else if (b == 0.0)
{
/* swap rows and columns to make it upper triangular */
*cs = 0.0;
*sn = 1.0;
tmp = d;
d = a;
a = tmp;
b = -c;
c = 0.0;
}
else if (((a - d) == 0.0) && (GSL_SIGN(b) != GSL_SIGN(c)))
{
/* the matrix has complex eigenvalues with a == d */
*cs = 1.0;
*sn = 0.0;
}
else
{
tmp = a - d;
p = 0.5 * tmp;
bcmax = GSL_MAX(fabs(b), fabs(c));
bcmis = GSL_MIN(fabs(b), fabs(c)) * GSL_SIGN(b) * GSL_SIGN(c);
scale = GSL_MAX(fabs(p), bcmax);
z = (p / scale) * p + (bcmax / scale) * bcmis;
if (z >= 4.0 * GSL_DBL_EPSILON)
{
/* real eigenvalues, compute a and d */
z = p + GSL_SIGN(p) * fabs(sqrt(scale) * sqrt(z));
a = d + z;
d -= (bcmax / z) * bcmis;
/* compute b and the rotation matrix */
tau = gsl_hypot(c, z);
*cs = z / tau;
*sn = c / tau;
b -= c;
c = 0.0;
}
else
{
/*
* complex eigenvalues, or real (almost) equal eigenvalues -
* make diagonal elements equal
*/
sigma = b + c;
tau = gsl_hypot(sigma, tmp);
*cs = sqrt(0.5 * (1.0 + fabs(sigma) / tau));
*sn = -(p / (tau * (*cs))) * GSL_SIGN(sigma);
/*
* Compute [ AA BB ] = [ A B ] [ CS -SN ]
* [ CC DD ] [ C D ] [ SN CS ]
*/
aa = a * (*cs) + b * (*sn);
bb = -a * (*sn) + b * (*cs);
cc = c * (*cs) + d * (*sn);
dd = -c * (*sn) + d * (*cs);
/*
* Compute [ A B ] = [ CS SN ] [ AA BB ]
* [ C D ] [-SN CS ] [ CC DD ]
*/
a = aa * (*cs) + cc * (*sn);
b = bb * (*cs) + dd * (*sn);
c = -aa * (*sn) + cc * (*cs);
d = -bb * (*sn) + dd * (*cs);
tmp = 0.5 * (a + d);
a = d = tmp;
if (c != 0.0)
{
if (b != 0.0)
{
if (GSL_SIGN(b) == GSL_SIGN(c))
{
/*
* real eigenvalues: reduce to upper triangular
* form
*/
sab = sqrt(fabs(b));
sac = sqrt(fabs(c));
p = GSL_SIGN(c) * fabs(sab * sac);
tau = 1.0 / sqrt(fabs(b + c));
a = tmp + p;
d = tmp - p;
b -= c;
c = 0.0;
cs1 = sab * tau;
sn1 = sac * tau;
tmp = (*cs) * cs1 - (*sn) * sn1;
*sn = (*cs) * sn1 + (*sn) * cs1;
*cs = tmp;
}
}
else
{
b = -c;
c = 0.0;
tmp = *cs;
*cs = -(*sn);
*sn = tmp;
}
}
}
}
/* set new matrix elements */
gsl_matrix_set(A, 0, 0, a);
gsl_matrix_set(A, 0, 1, b);
gsl_matrix_set(A, 1, 0, c);
gsl_matrix_set(A, 1, 1, d);
} /* francis_standard_form() */
|