File: genherm.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (340 lines) | stat: -rw-r--r-- 9,289 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/* eigen/genherm.c
 * 
 * Copyright (C) 2007, 2019 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <stdlib.h>

#include <config.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>

#include "recurse.h"

/*
 * This module computes the eigenvalues of a complex generalized
 * hermitian-definite eigensystem A x = \lambda B x, where A and
 * B are hermitian, and B is positive-definite.
 */

static int genherm_standardize_L2(gsl_matrix_complex *A, const gsl_matrix_complex *B);
static int genherm_standardize_L3(gsl_matrix_complex *A, const gsl_matrix_complex *B);

/*
gsl_eigen_genherm_alloc()

Allocate a workspace for solving the generalized hermitian-definite
eigenvalue problem. The size of this workspace is O(3n).

Inputs: n - size of matrices

Return: pointer to workspace
*/

gsl_eigen_genherm_workspace *
gsl_eigen_genherm_alloc(const size_t n)
{
  gsl_eigen_genherm_workspace *w;

  if (n == 0)
    {
      GSL_ERROR_NULL ("matrix dimension must be positive integer",
                      GSL_EINVAL);
    }

  w = (gsl_eigen_genherm_workspace *) calloc (1, sizeof (gsl_eigen_genherm_workspace));

  if (w == 0)
    {
      GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM);
    }

  w->size = n;

  w->herm_workspace_p = gsl_eigen_herm_alloc(n);
  if (!w->herm_workspace_p)
    {
      gsl_eigen_genherm_free(w);
      GSL_ERROR_NULL("failed to allocate space for herm workspace", GSL_ENOMEM);
    }

  return (w);
} /* gsl_eigen_genherm_alloc() */

/*
gsl_eigen_genherm_free()
  Free workspace w
*/

void
gsl_eigen_genherm_free (gsl_eigen_genherm_workspace * w)
{
  RETURN_IF_NULL (w);

  if (w->herm_workspace_p)
    gsl_eigen_herm_free(w->herm_workspace_p);

  free(w);
} /* gsl_eigen_genherm_free() */

/*
gsl_eigen_genherm()

Solve the generalized hermitian-definite eigenvalue problem

A x = \lambda B x

for the eigenvalues \lambda.

Inputs: A    - complex hermitian matrix
        B    - complex hermitian and positive definite matrix
        eval - where to store eigenvalues
        w    - workspace

Return: success or error
*/

int
gsl_eigen_genherm (gsl_matrix_complex * A, gsl_matrix_complex * B,
                   gsl_vector * eval, gsl_eigen_genherm_workspace * w)
{
  const size_t N = A->size1;

  /* check matrix and vector sizes */

  if (N != A->size2)
    {
      GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR);
    }
  else if ((N != B->size1) || (N != B->size2))
    {
      GSL_ERROR ("B matrix dimensions must match A", GSL_EBADLEN);
    }
  else if (eval->size != N)
    {
      GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN);
    }
  else if (w->size != N)
    {
      GSL_ERROR ("matrix size does not match workspace", GSL_EBADLEN);
    }
  else
    {
      int s;

      /* compute Cholesky factorization of B */
      s = gsl_linalg_complex_cholesky_decomp(B);
      if (s != GSL_SUCCESS)
        return s; /* B is not positive definite */

      /* transform to standard hermitian eigenvalue problem */
      gsl_eigen_genherm_standardize(A, B);

      s = gsl_eigen_herm(A, eval, w->herm_workspace_p);

      return s;
    }
} /* gsl_eigen_genherm() */

/*
gsl_eigen_genherm_standardize()
  Reduce the generalized hermitian-definite eigenproblem to
the standard hermitian eigenproblem by computing

C = L^{-1} A L^{-H}

where L L^H is the Cholesky decomposition of B

Inputs: A - (input/output) complex hermitian matrix
        B - complex hermitian, positive definite matrix in Cholesky form

Return: success

Notes: A is overwritten by L^{-1} A L^{-H}
*/

int
gsl_eigen_genherm_standardize(gsl_matrix_complex *A, const gsl_matrix_complex *B)
{
  return genherm_standardize_L3(A, B);
}

/*
genherm_standardize_L2()
  Reduce the generalized hermitian-definite eigenproblem to
the standard hermitian eigenproblem by computing

C = L^{-1} A L^{-H}

where L L^H is the Cholesky decomposition of B

Inputs: A - (input/output) complex hermitian matrix
        B - complex hermitian, positive definite matrix in Cholesky form

Return: success

Notes:
1) A is overwritten by L^{-1} A L^{-H}

2) Based on LAPACK ZHEGS2 using Level 2 BLAS
*/

static int
genherm_standardize_L2(gsl_matrix_complex *A, const gsl_matrix_complex *B)
{
  const size_t N = A->size1;
  size_t i;
  double a, b;
  gsl_complex y, z;

  GSL_SET_IMAG(&z, 0.0);

  for (i = 0; i < N; ++i)
    {
      /* update lower triangle of A(i:n, i:n) */

      y = gsl_matrix_complex_get(A, i, i);
      a = GSL_REAL(y);
      y = gsl_matrix_complex_get(B, i, i);
      b = GSL_REAL(y);
      a /= b * b;
      GSL_SET_REAL(&z, a);
      gsl_matrix_complex_set(A, i, i, z);

      if (i < N - 1)
        {
          gsl_vector_complex_view ai =
            gsl_matrix_complex_subcolumn(A, i, i + 1, N - i - 1);
          gsl_matrix_complex_view ma =
            gsl_matrix_complex_submatrix(A, i + 1, i + 1, N - i - 1, N - i - 1);
          gsl_vector_complex_const_view bi =
            gsl_matrix_complex_const_subcolumn(B, i, i + 1, N - i - 1);
          gsl_matrix_complex_const_view mb =
            gsl_matrix_complex_const_submatrix(B, i + 1, i + 1, N - i - 1, N - i - 1);

          gsl_blas_zdscal(1.0 / b, &ai.vector);

          GSL_SET_REAL(&z, -0.5 * a);
          gsl_blas_zaxpy(z, &bi.vector, &ai.vector);

          gsl_blas_zher2(CblasLower,
                         GSL_COMPLEX_NEGONE,
                         &ai.vector,
                         &bi.vector,
                         &ma.matrix);

          gsl_blas_zaxpy(z, &bi.vector, &ai.vector);

          gsl_blas_ztrsv(CblasLower,
                         CblasNoTrans,
                         CblasNonUnit,
                         &mb.matrix,
                         &ai.vector);
        }
    }

  return GSL_SUCCESS;
}

/*
genherm_standardize_L3()
  Reduce the generalized hermitian-definite eigenproblem to
the standard hermitian eigenproblem by computing

C = L^{-1} A L^{-H}

where L L^H is the Cholesky decomposition of B

Inputs: A - (input/output) complex hermitian matrix
        B - complex hermitian, positive definite matrix in Cholesky form

Return: success

Notes:
1) A is overwritten by L^{-1} A L^{-H}

2) Based on ReLAPACK using Level 3 BLAS
*/

static int
genherm_standardize_L3(gsl_matrix_complex *A, const gsl_matrix_complex *B)
{
  const size_t N = A->size1;

  if (N <= CROSSOVER_GENHERM)
    {
      /* use Level 2 algorithm */
      return genherm_standardize_L2(A, B);
    }
  else
    {
      /*
       * partition matrices:
       *
       * A11 A12  and  B11 B12
       * A21 A22       B21 B22
       *
       * where A11 and B11 are N1-by-N1
       */
      int status;
      const size_t N1 = GSL_EIGEN_SPLIT_COMPLEX(N);
      const size_t N2 = N - N1;

      gsl_matrix_complex_view A11 = gsl_matrix_complex_submatrix(A, 0, 0, N1, N1);
      gsl_matrix_complex_view A21 = gsl_matrix_complex_submatrix(A, N1, 0, N2, N1);
      gsl_matrix_complex_view A22 = gsl_matrix_complex_submatrix(A, N1, N1, N2, N2);

      gsl_matrix_complex_const_view B11 = gsl_matrix_complex_const_submatrix(B, 0, 0, N1, N1);
      gsl_matrix_complex_const_view B21 = gsl_matrix_complex_const_submatrix(B, N1, 0, N2, N1);
      gsl_matrix_complex_const_view B22 = gsl_matrix_complex_const_submatrix(B, N1, N1, N2, N2);

      const gsl_complex MHALF = gsl_complex_rect(-0.5, 0.0);

      /* recursion on (A11, B11) */
      status = genherm_standardize_L3(&A11.matrix, &B11.matrix);
      if (status)
        return status;

      /* A21 = A21 * B11^{-1} */
      gsl_blas_ztrsm(CblasRight, CblasLower, CblasConjTrans, CblasNonUnit, GSL_COMPLEX_ONE, &B11.matrix, &A21.matrix);

      /* A21 = A21 - 1/2 B21 A11 */
      gsl_blas_zhemm(CblasRight, CblasLower, MHALF, &A11.matrix, &B21.matrix, GSL_COMPLEX_ONE, &A21.matrix);

      /* A22 = A22 - A21 * B21' - B21 * A21' */
      gsl_blas_zher2k(CblasLower, CblasNoTrans, GSL_COMPLEX_NEGONE, &A21.matrix, &B21.matrix, 1.0, &A22.matrix);

      /* A21 = A21 - 1/2 B21 A11 */
      gsl_blas_zhemm(CblasRight, CblasLower, MHALF, &A11.matrix, &B21.matrix, GSL_COMPLEX_ONE, &A21.matrix);

      /* A21 = B22 * A21^{-1} */
      gsl_blas_ztrsm(CblasLeft, CblasLower, CblasNoTrans, CblasNonUnit, GSL_COMPLEX_ONE, &B22.matrix, &A21.matrix);

      /* recursion on (A22, B22) */
      status = genherm_standardize_L3(&A22.matrix, &B22.matrix);
      if (status)
        return status;

      return GSL_SUCCESS;
    }
}