1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
/* eigen/genhermv.c
*
* Copyright (C) 2007 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdlib.h>
#include <config.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>
/*
* This module computes the eigenvalues and eigenvectors of a complex
* generalized hermitian-definite eigensystem A x = \lambda B x, where
* A and B are hermitian, and B is positive-definite.
*/
static void genhermv_normalize_eigenvectors(gsl_matrix_complex *evec);
/*
gsl_eigen_genhermv_alloc()
Allocate a workspace for solving the generalized hermitian-definite
eigenvalue problem. The size of this workspace is O(5n).
Inputs: n - size of matrices
Return: pointer to workspace
*/
gsl_eigen_genhermv_workspace *
gsl_eigen_genhermv_alloc(const size_t n)
{
gsl_eigen_genhermv_workspace *w;
if (n == 0)
{
GSL_ERROR_NULL ("matrix dimension must be positive integer",
GSL_EINVAL);
}
w = (gsl_eigen_genhermv_workspace *) calloc (1, sizeof (gsl_eigen_genhermv_workspace));
if (w == 0)
{
GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM);
}
w->size = n;
w->hermv_workspace_p = gsl_eigen_hermv_alloc(n);
if (!w->hermv_workspace_p)
{
gsl_eigen_genhermv_free(w);
GSL_ERROR_NULL("failed to allocate space for hermv workspace", GSL_ENOMEM);
}
return (w);
} /* gsl_eigen_genhermv_alloc() */
/*
gsl_eigen_genhermv_free()
Free workspace w
*/
void
gsl_eigen_genhermv_free (gsl_eigen_genhermv_workspace * w)
{
RETURN_IF_NULL (w);
if (w->hermv_workspace_p)
gsl_eigen_hermv_free(w->hermv_workspace_p);
free(w);
} /* gsl_eigen_genhermv_free() */
/*
gsl_eigen_genhermv()
Solve the generalized hermitian-definite eigenvalue problem
A x = \lambda B x
for the eigenvalues \lambda and eigenvectors x.
Inputs: A - complex hermitian matrix
B - complex hermitian and positive definite matrix
eval - where to store eigenvalues
evec - where to store eigenvectors
w - workspace
Return: success or error
*/
int
gsl_eigen_genhermv (gsl_matrix_complex * A, gsl_matrix_complex * B,
gsl_vector * eval, gsl_matrix_complex * evec,
gsl_eigen_genhermv_workspace * w)
{
const size_t N = A->size1;
/* check matrix and vector sizes */
if (N != A->size2)
{
GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR);
}
else if ((N != B->size1) || (N != B->size2))
{
GSL_ERROR ("B matrix dimensions must match A", GSL_EBADLEN);
}
else if (eval->size != N)
{
GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN);
}
else if (evec->size1 != evec->size2)
{
GSL_ERROR ("eigenvector matrix must be square", GSL_ENOTSQR);
}
else if (evec->size1 != N)
{
GSL_ERROR ("eigenvector matrix has wrong size", GSL_EBADLEN);
}
else if (w->size != N)
{
GSL_ERROR ("matrix size does not match workspace", GSL_EBADLEN);
}
else
{
int s;
/* compute Cholesky factorization of B */
s = gsl_linalg_complex_cholesky_decomp(B);
if (s != GSL_SUCCESS)
return s; /* B is not positive definite */
/* transform to standard hermitian eigenvalue problem */
gsl_eigen_genherm_standardize(A, B);
/* compute eigenvalues and eigenvectors */
s = gsl_eigen_hermv(A, eval, evec, w->hermv_workspace_p);
if (s != GSL_SUCCESS)
return s;
/* backtransform eigenvectors: evec -> L^{-H} evec */
gsl_blas_ztrsm(CblasLeft,
CblasLower,
CblasConjTrans,
CblasNonUnit,
GSL_COMPLEX_ONE,
B,
evec);
/* the blas call destroyed the normalization - renormalize */
genhermv_normalize_eigenvectors(evec);
return GSL_SUCCESS;
}
} /* gsl_eigen_genhermv() */
/********************************************
* INTERNAL ROUTINES *
********************************************/
/*
genhermv_normalize_eigenvectors()
Normalize eigenvectors so that their Euclidean norm is 1
Inputs: evec - eigenvectors
*/
static void
genhermv_normalize_eigenvectors(gsl_matrix_complex *evec)
{
const size_t N = evec->size1;
size_t i; /* looping */
for (i = 0; i < N; ++i)
{
gsl_vector_complex_view vi = gsl_matrix_complex_column(evec, i);
double scale = 1.0 / gsl_blas_dznrm2(&vi.vector);
gsl_blas_zdscal(scale, &vi.vector);
}
} /* genhermv_normalize_eigenvectors() */
|