1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/* eigen/qrstep.c
*
* Copyright (C) 2007, 2010 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* remove off-diagonal elements which are neglegible compared with the
neighboring diagonal elements */
static void
chop_small_elements (const size_t N, const double d[], double sd[])
{
double d_i = d[0];
size_t i;
for (i = 0; i < N - 1; i++)
{
double sd_i = sd[i];
double d_ip1 = d[i + 1];
if (fabs (sd_i) < GSL_DBL_EPSILON * (fabs (d_i) + fabs (d_ip1)))
{
sd[i] = 0.0;
}
d_i = d_ip1;
}
}
/* Generate a Givens rotation (cos,sin) which takes v=(x,y) to (|v|,0)
From Golub and Van Loan, "Matrix Computations", Section 5.1.8 */
inline static void
create_givens (const double a, const double b, double *c, double *s)
{
if (b == 0)
{
*c = 1;
*s = 0;
}
else if (fabs (b) > fabs (a))
{
double t = -a / b;
double s1 = 1.0 / sqrt (1 + t * t);
*s = s1;
*c = s1 * t;
}
else
{
double t = -b / a;
double c1 = 1.0 / sqrt (1 + t * t);
*c = c1;
*s = c1 * t;
}
}
inline static double
trailing_eigenvalue (const size_t n, const double d[], const double sd[])
{
double ta = d[n - 2];
double tb = d[n - 1];
double tab = sd[n - 2];
double dt = (ta - tb) / 2.0;
double mu;
if (dt > 0)
{
mu = tb - tab * (tab / (dt + hypot (dt, tab)));
}
else if (dt == 0)
{
mu = tb - fabs(tab);
}
else
{
mu = tb + tab * (tab / ((-dt) + hypot (dt, tab)));
}
return mu;
}
static void
qrstep (const size_t n, double d[], double sd[], double gc[], double gs[])
{
double x, z;
double ak, bk, zk, ap, bp, aq, bq;
size_t k;
double mu = trailing_eigenvalue (n, d, sd);
/* If mu is large relative to d_0 and sd_0 then the Givens rotation
will have no effect, leading to an infinite loop.
We set mu to zero in this case, which at least diagonalises the
submatrix [d_0, sd_0 ; sd_0, d_0] and allows further progress. */
if (GSL_DBL_EPSILON * fabs(mu) > (fabs(d[0]) + fabs(sd[0]))) {
mu = 0;
}
x = d[0] - mu;
z = sd[0];
ak = 0;
bk = 0;
zk = 0;
ap = d[0];
bp = sd[0];
aq = d[1];
if (n == 2)
{
double c, s;
create_givens (x, z, &c, &s);
if (gc != NULL)
gc[0] = c;
if (gs != NULL)
gs[0] = s;
{
double ap1 = c * (c * ap - s * bp) + s * (s * aq - c * bp);
double bp1 = c * (s * ap + c * bp) - s * (s * bp + c * aq);
double aq1 = s * (s * ap + c * bp) + c * (s * bp + c * aq);
ak = ap1;
bk = bp1;
ap = aq1;
}
d[0] = ak;
sd[0] = bk;
d[1] = ap;
return;
}
bq = sd[1];
for (k = 0; k < n - 1; k++)
{
double c, s;
create_givens (x, z, &c, &s);
/* store Givens rotation */
if (gc != NULL)
gc[k] = c;
if (gs != NULL)
gs[k] = s;
/* compute G' T G */
{
double bk1 = c * bk - s * zk;
double ap1 = c * (c * ap - s * bp) + s * (s * aq - c * bp);
double bp1 = c * (s * ap + c * bp) - s * (s * bp + c * aq);
double zp1 = -s * bq;
double aq1 = s * (s * ap + c * bp) + c * (s * bp + c * aq);
double bq1 = c * bq;
ak = ap1;
bk = bp1;
zk = zp1;
ap = aq1;
bp = bq1;
if (k < n - 2)
aq = d[k + 2];
if (k < n - 3)
bq = sd[k + 2];
d[k] = ak;
if (k > 0)
sd[k - 1] = bk1;
if (k < n - 2)
sd[k + 1] = bp;
x = bk;
z = zk;
}
}
/* k = n - 1 */
d[k] = ap;
sd[k - 1] = bk;
}
|