1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/* fft/hc_radix2.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
int
FUNCTION(gsl_fft_halfcomplex,radix2_backward) (BASE data[],
const size_t stride,
const size_t n)
{
int status = FUNCTION(gsl_fft_halfcomplex,radix2_transform) (data, stride, n) ;
return status ;
}
int
FUNCTION(gsl_fft_halfcomplex,radix2_inverse) (BASE data[],
const size_t stride,
const size_t n)
{
int status = FUNCTION(gsl_fft_halfcomplex,radix2_transform) (data, stride, n);
if (status)
{
return status;
}
/* normalize inverse fft with 1/n */
{
const ATOMIC norm = 1.0 / n;
size_t i;
for (i = 0; i < n; i++)
{
data[stride*i] *= norm;
}
}
return status;
}
int
FUNCTION(gsl_fft_halfcomplex,radix2_transform) (BASE data[],
const size_t stride,
const size_t n)
{
int result ;
size_t p, p_1, q;
size_t i;
size_t logn = 0;
int status;
if (n == 1) /* identity operation */
{
return 0 ;
}
/* make sure that n is a power of 2 */
result = fft_binary_logn(n) ;
if (result == -1)
{
GSL_ERROR ("n is not a power of 2", GSL_EINVAL);
}
else
{
logn = result ;
}
/* apply fft recursion */
p = n; q = 1 ; p_1 = n/2 ;
for (i = 1; i <= logn; i++)
{
size_t a, b;
/* a = 0 */
for (b = 0; b < q; b++)
{
const ATOMIC z0 = VECTOR(data,stride,b*p);
const ATOMIC z1 = VECTOR(data,stride,b*p + p_1);
const ATOMIC t0_real = z0 + z1 ;
const ATOMIC t1_real = z0 - z1 ;
VECTOR(data,stride,b*p) = t0_real;
VECTOR(data,stride,b*p + p_1) = t1_real ;
}
/* a = 1 ... p_{i-1}/2 - 1 */
{
ATOMIC w_real = 1.0;
ATOMIC w_imag = 0.0;
const ATOMIC theta = 2.0 * M_PI / p;
const ATOMIC s = sin (theta);
const ATOMIC t = sin (theta / 2.0);
const ATOMIC s2 = 2.0 * t * t;
for (a = 1; a < (p_1)/2; a++)
{
/* trignometric recurrence for w-> exp(i theta) w */
{
const ATOMIC tmp_real = w_real - s * w_imag - s2 * w_real;
const ATOMIC tmp_imag = w_imag + s * w_real - s2 * w_imag;
w_real = tmp_real;
w_imag = tmp_imag;
}
for (b = 0; b < q; b++)
{
ATOMIC z0_real = VECTOR(data,stride,b*p + a) ;
ATOMIC z0_imag = VECTOR(data,stride,b*p + p - a) ;
ATOMIC z1_real = VECTOR(data,stride,b*p + p_1 - a) ;
ATOMIC z1_imag = -VECTOR(data,stride,b*p + p_1 + a) ;
/* t0 = z0 + z1 */
ATOMIC t0_real = z0_real + z1_real;
ATOMIC t0_imag = z0_imag + z1_imag;
/* t1 = (z0 - z1) */
ATOMIC t1_real = z0_real - z1_real;
ATOMIC t1_imag = z0_imag - z1_imag;
VECTOR(data,stride,b*p + a) = t0_real ;
VECTOR(data,stride,b*p + p_1 - a) = t0_imag ;
VECTOR(data,stride,b*p + p_1 + a) = (w_real * t1_real - w_imag * t1_imag) ;
VECTOR(data,stride,b*p + p - a) = (w_real * t1_imag + w_imag * t1_real) ;
}
}
}
if (p_1 > 1) {
for (b = 0; b < q; b++) {
VECTOR(data,stride,b*p + p_1/2) *= 2 ;
VECTOR(data,stride,b*p + p_1 + p_1/2) *= -2 ;
}
}
p_1 = p_1 / 2 ;
p = p / 2 ;
q = q * 2 ;
}
/* bit reverse the ordering of output data for decimation in
frequency algorithm */
status = FUNCTION(fft_real,bitreverse_order)(data, stride, n, logn) ;
return 0;
}
|