1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/* filter/test_impulse.c
*
* Copyright (C) 2018 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_filter.h>
#include <gsl/gsl_movstat.h>
#include <gsl/gsl_test.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
static int
vector_sum(const gsl_vector_int * v)
{
size_t i;
int sum = 0;
for (i = 0; i < v->size; ++i)
{
int vi = gsl_vector_int_get(v, i);
sum += vi;
}
return sum;
}
static void
test_impulse_proc(const double tol, const size_t n, const size_t K, const double nsigma,
const gsl_filter_end_t etype, const gsl_filter_scale_t stype,
const double outlier_percentage, gsl_rng * r)
{
gsl_vector * x = gsl_vector_alloc(n);
gsl_vector * y = gsl_vector_alloc(n);
gsl_vector * z = gsl_vector_alloc(n);
gsl_vector * y_med = gsl_vector_alloc(n);
gsl_vector * xmedian = gsl_vector_alloc(n);
gsl_vector * xsigma = gsl_vector_alloc(n);
size_t noutlier;
gsl_vector_int * ioutlier = gsl_vector_int_alloc(n);
gsl_vector_int * ioutlier_exact = gsl_vector_int_alloc(n);
size_t i;
gsl_filter_impulse_workspace *impulse_p = gsl_filter_impulse_alloc(K);
gsl_filter_median_workspace *median_p = gsl_filter_median_alloc(K);
size_t noutlier_exact = 0;
char buf[1024];
gsl_vector_int_set_zero(ioutlier_exact);
for (i = 0; i < n; ++i)
{
double xi = gsl_ran_gaussian(r, 1.0);
double vi = gsl_rng_uniform(r);
if (vi <= outlier_percentage)
{
xi += 15.0 * GSL_SIGN(xi);
++noutlier_exact;
gsl_vector_int_set(ioutlier_exact, i, 1);
}
gsl_vector_set(x, i, xi);
}
/* first test that median filter is equal to impulse filter with nsigma = 0 */
gsl_filter_median(etype, x, y_med, median_p);
gsl_filter_impulse(etype, stype, 0.0, x, y, xmedian, xsigma, &noutlier, ioutlier, impulse_p);
sprintf(buf, "impulse nsigma=0 smf comparison, etype=%u stype=%u", etype, stype);
compare_vectors(tol, y, y_med, buf);
/* second test: filter y = impulse(x) with given nsigma */
gsl_filter_impulse(etype, stype, nsigma, x, y, xmedian, xsigma, &noutlier, ioutlier, impulse_p);
/* test correct number of outliers detected */
gsl_test(noutlier != noutlier_exact, "impulse [n=%zu,K=%zu,nsigma=%g,outlier_percentage=%g] noutlier=%zu exact=%zu",
n, K, nsigma, outlier_percentage, noutlier, noutlier_exact);
#if 0
{
for (i = 0; i < n; ++i)
{
printf("%.12e %.12e %d %.12e %.12e\n",
gsl_vector_get(x, i),
gsl_vector_get(y, i),
gsl_vector_int_get(ioutlier, i),
gsl_vector_get(xmedian, i) + nsigma * gsl_vector_get(xsigma, i),
gsl_vector_get(xmedian, i) - nsigma * gsl_vector_get(xsigma, i));
}
}
#endif
/* test outliers found in correct locations */
for (i = 0; i < n; ++i)
{
int val = gsl_vector_int_get(ioutlier, i);
int val_exact = gsl_vector_int_get(ioutlier_exact, i);
gsl_test(val != val_exact, "test_impulse: outlier mismatch [i=%zu,K=%zu,nsigma=%g,outlier_percentage=%g] ioutlier=%d ioutlier_exact=%d",
i, K, nsigma, outlier_percentage, val, val_exact);
}
/* test noutlier = sum(ioutlier) */
{
size_t iout_sum = vector_sum(ioutlier);
gsl_test(noutlier != iout_sum, "impulse [K=%zu,nsigma=%g,outlier_percentage=%g] noutlier=%zu sum(ioutlier)=%zu",
K, nsigma, outlier_percentage, noutlier, iout_sum);
}
/* third test: test in-place filter z = impulse(z) */
gsl_vector_memcpy(z, x);
gsl_filter_impulse(etype, stype, nsigma, z, z, xmedian, xsigma, &noutlier, ioutlier, impulse_p);
sprintf(buf, "impulse in-place nsigma=%g,n=%zu,K=%zu,etype=%u stype=%u", nsigma, n, K, etype, stype);
compare_vectors(GSL_DBL_EPSILON, z, y, buf);
gsl_vector_free(x);
gsl_vector_free(y);
gsl_vector_free(z);
gsl_vector_free(y_med);
gsl_vector_free(xmedian);
gsl_vector_free(xsigma);
gsl_vector_int_free(ioutlier);
gsl_vector_int_free(ioutlier_exact);
gsl_filter_impulse_free(impulse_p);
gsl_filter_median_free(median_p);
}
static void
test_impulse(gsl_rng * r)
{
const double tol = 1.0e-10;
test_impulse_proc(tol, 1000, 21, 6.0, GSL_FILTER_END_TRUNCATE, GSL_FILTER_SCALE_QN, 0.05, r);
test_impulse_proc(tol, 1000, 21, 6.0, GSL_FILTER_END_TRUNCATE, GSL_FILTER_SCALE_SN, 0.05, r);
test_impulse_proc(tol, 1000, 21, 6.0, GSL_FILTER_END_TRUNCATE, GSL_FILTER_SCALE_MAD, 0.05, r);
test_impulse_proc(tol, 1000, 21, 6.0, GSL_FILTER_END_TRUNCATE, GSL_FILTER_SCALE_IQR, 0.05, r);
}
|