1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
|
/* linalg/cod.c
*
* Copyright (C) 2016, 2017 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_permute_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
/*
* This module contains routines for factoring an M-by-N matrix A as:
*
* A P = Q R Z^T
*
* known as the Complete Orthogonal Decomposition, where:
*
* P is a N-by-N permutation matrix
* Q is M-by-M orthogonal
* R has an r-by-r upper triangular block
* Z is N-by-N orthogonal
*
* When A is full rank, Z = I and this becomes the QR decomposition
* with column pivoting. When A is rank deficient, then
*
* R = [ R11 0 ] where R11 is r-by-r and r = rank(A)
* [ 0 0 ]
*/
static int cod_RZ(gsl_matrix * A, gsl_vector * tau);
static double cod_householder_transform(double *alpha, gsl_vector * v);
static int cod_householder_mh(const double tau, const gsl_vector * v,
gsl_matrix * A, gsl_vector * work);
static int cod_householder_hv(const double tau, const gsl_vector * v, gsl_vector * w);
static int cod_householder_Zvec(const gsl_matrix * QRZT, const gsl_vector * tau_Z, const size_t rank,
gsl_vector * v);
static int cod_trireg_solve(const gsl_matrix * R, const double lambda, const gsl_vector * b,
gsl_matrix * S, gsl_vector * x, gsl_vector * work);
int
gsl_linalg_COD_decomp_e(gsl_matrix * A, gsl_vector * tau_Q, gsl_vector * tau_Z,
gsl_permutation * p, double tol, size_t * rank, gsl_vector * work)
{
const size_t M = A->size1;
const size_t N = A->size2;
if (tau_Q->size != GSL_MIN (M, N))
{
GSL_ERROR ("size of tau_Q must be MIN(M,N)", GSL_EBADLEN);
}
else if (tau_Z->size != GSL_MIN (M, N))
{
GSL_ERROR ("size of tau_Z must be MIN(M,N)", GSL_EBADLEN);
}
else if (p->size != N)
{
GSL_ERROR ("permutation size must be N", GSL_EBADLEN);
}
else if (work->size != N)
{
GSL_ERROR ("work size must be N", GSL_EBADLEN);
}
else
{
int status, signum;
size_t r;
/* decompose: A P = Q R */
status = gsl_linalg_QRPT_decomp(A, tau_Q, p, &signum, work);
if (status)
return status;
/* estimate rank of A */
r = gsl_linalg_QRPT_rank(A, tol);
if (r < N)
{
/*
* matrix is rank-deficient, so that the R factor is
*
* R = [ R11 R12 ] =~ [ R11 R12 ]
* [ 0 R22 ] [ 0 0 ]
*
* compute RZ decomposition of upper trapezoidal matrix
* [ R11 R12 ] = [ R11~ 0 ] Z
*/
gsl_matrix_view R_upper = gsl_matrix_submatrix(A, 0, 0, r, N);
gsl_vector_view t = gsl_vector_subvector(tau_Z, 0, r);
cod_RZ(&R_upper.matrix, &t.vector);
}
*rank = r;
return GSL_SUCCESS;
}
}
int
gsl_linalg_COD_decomp(gsl_matrix * A, gsl_vector * tau_Q, gsl_vector * tau_Z,
gsl_permutation * p, size_t * rank, gsl_vector * work)
{
return gsl_linalg_COD_decomp_e(A, tau_Q, tau_Z, p, -1.0, rank, work);
}
/*
gsl_linalg_COD_lssolve()
Find the least squares solution to the overdetermined system
min ||b - A x||^2
for M >= N using the COD factorization A P = Q R Z
Inputs: QRZT - matrix A, in COD compressed format, M-by-N
tau_Q - Householder scalars for Q, length min(M,N)
tau_Z - Householder scalars for Z, length min(M,N)
perm - permutation matrix
rank - rank of A
b - rhs vector, length M
x - (output) solution vector, length N
residual - (output) residual vector, b - A x, length M
*/
int
gsl_linalg_COD_lssolve (const gsl_matrix * QRZT, const gsl_vector * tau_Q, const gsl_vector * tau_Z,
const gsl_permutation * perm, const size_t rank, const gsl_vector * b,
gsl_vector * x, gsl_vector * residual)
{
const size_t M = QRZT->size1;
const size_t N = QRZT->size2;
if (M < N)
{
GSL_ERROR ("QRZT matrix must have M>=N", GSL_EBADLEN);
}
else if (M != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (rank > GSL_MIN (M, N))
{
GSL_ERROR ("rank must be <= MIN(M,N)", GSL_EBADLEN);
}
else if (N != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else if (M != residual->size)
{
GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN);
}
else
{
gsl_matrix_const_view R11 = gsl_matrix_const_submatrix (QRZT, 0, 0, rank, rank);
gsl_vector_view QTb1 = gsl_vector_subvector(residual, 0, rank);
gsl_vector_view x1 = gsl_vector_subvector(x, 0, rank);
gsl_vector_set_zero(x);
/* compute residual = Q^T b = [ c1 ; c2 ] */
gsl_vector_memcpy(residual, b);
gsl_linalg_QR_QTvec (QRZT, tau_Q, residual);
/* solve x1 := R11^{-1} (Q^T b)(1:r) */
gsl_vector_memcpy(&(x1.vector), &(QTb1.vector));
gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, &(R11.matrix), &(x1.vector));
/* compute Z ( R11^{-1} x1; 0 ) */
cod_householder_Zvec(QRZT, tau_Z, rank, x);
/* compute x = P Z^T ( R11^{-1} x1; 0 ) */
gsl_permute_vector_inverse(perm, x);
/* compute residual = b - A x = Q (Q^T b - R [ R11^{-1} x1; 0 ]) = Q [ 0 ; c2 ] */
gsl_vector_set_zero(&(QTb1.vector));
gsl_linalg_QR_Qvec(QRZT, tau_Q, residual);
return GSL_SUCCESS;
}
}
/*
gsl_linalg_COD_lssolve2()
Find the least squares solution to the Tikhonov regularized
system in standard form:
min ||b - A x||^2 + lambda^2 ||x||^2
for M >= N using the COD factorization A P = Q R Z
Inputs: lambda - parameter
QRZT - matrix A, in COD compressed format, M-by-N
tau_Q - Householder scalars for Q, length min(M,N)
tau_Z - Householder scalars for Z, length min(M,N)
perm - permutation matrix
rank - rank of A
b - rhs vector, length M
x - (output) solution vector, length N
residual - (output) residual vector, b - A x, length M
S - workspace, rank-by-rank
work - workspace, length rank
*/
int
gsl_linalg_COD_lssolve2 (const double lambda, const gsl_matrix * QRZT, const gsl_vector * tau_Q, const gsl_vector * tau_Z,
const gsl_permutation * perm, const size_t rank, const gsl_vector * b,
gsl_vector * x, gsl_vector * residual, gsl_matrix * S, gsl_vector * work)
{
const size_t M = QRZT->size1;
const size_t N = QRZT->size2;
if (M < N)
{
GSL_ERROR ("QRZT matrix must have M>=N", GSL_EBADLEN);
}
else if (M != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (rank > GSL_MIN (M, N))
{
GSL_ERROR ("rank must be <= MIN(M,N)", GSL_EBADLEN);
}
else if (N != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else if (M != residual->size)
{
GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN);
}
else if (S->size1 != rank || S->size2 != rank)
{
GSL_ERROR ("S must be rank-by-rank", GSL_EBADLEN);
}
else if (work->size != rank)
{
GSL_ERROR ("work must be length rank", GSL_EBADLEN);
}
else
{
gsl_matrix_const_view R11 = gsl_matrix_const_submatrix (QRZT, 0, 0, rank, rank);
gsl_vector_view c1 = gsl_vector_subvector(residual, 0, rank);
gsl_vector_view y1 = gsl_vector_subvector(x, 0, rank);
gsl_vector_set_zero(x);
/* compute residual = Q^T b = [ c1 ; c2 ]*/
gsl_vector_memcpy(residual, b);
gsl_linalg_QR_QTvec (QRZT, tau_Q, residual);
/* solve [ R11 ; lambda*I ] y1 = [ (Q^T b)(1:r) ; 0 ] */
cod_trireg_solve(&(R11.matrix), lambda, &(c1.vector), S, &(y1.vector), work);
/* save y1 for later residual calculation */
gsl_vector_memcpy(work, &(y1.vector));
/* compute Z [ y1; 0 ] */
cod_householder_Zvec(QRZT, tau_Z, rank, x);
/* compute x = P Z^T ( y1; 0 ) */
gsl_permute_vector_inverse(perm, x);
/* compute residual = b - A x = Q (Q^T b - [ R11 y1; 0 ]) = Q [ c1 - R11*y1 ; c2 ] */
/* work = R11*y1 */
gsl_blas_dtrmv(CblasUpper, CblasNoTrans, CblasNonUnit, &(R11.matrix), work);
gsl_vector_sub(&(c1.vector), work);
gsl_linalg_QR_Qvec(QRZT, tau_Q, residual);
return GSL_SUCCESS;
}
}
/*
gsl_linalg_COD_unpack()
Unpack encoded COD decomposition into the matrices Q,R,Z,P
Inputs: QRZT - encoded COD decomposition
tau_Q - Householder scalars for Q
tau_Z - Householder scalars for Z
rank - rank of matrix (as determined from gsl_linalg_COD_decomp)
Q - (output) M-by-M matrix Q
R - (output) M-by-N matrix R
Z - (output) N-by-N matrix Z
*/
int
gsl_linalg_COD_unpack(const gsl_matrix * QRZT, const gsl_vector * tau_Q,
const gsl_vector * tau_Z, const size_t rank, gsl_matrix * Q,
gsl_matrix * R, gsl_matrix * Z)
{
const size_t M = QRZT->size1;
const size_t N = QRZT->size2;
if (tau_Q->size != GSL_MIN (M, N))
{
GSL_ERROR ("size of tau_Q must be MIN(M,N)", GSL_EBADLEN);
}
else if (tau_Z->size != GSL_MIN (M, N))
{
GSL_ERROR ("size of tau_Z must be MIN(M,N)", GSL_EBADLEN);
}
else if (rank > GSL_MIN (M, N))
{
GSL_ERROR ("rank must be <= MIN(M,N)", GSL_EBADLEN);
}
else if (Q->size1 != M || Q->size2 != M)
{
GSL_ERROR ("Q must by M-by-M", GSL_EBADLEN);
}
else if (R->size1 != M || R->size2 != N)
{
GSL_ERROR ("R must by M-by-N", GSL_EBADLEN);
}
else if (Z->size1 != N || Z->size2 != N)
{
GSL_ERROR ("Z must by N-by-N", GSL_EBADLEN);
}
else
{
size_t i;
gsl_matrix_view R11 = gsl_matrix_submatrix(R, 0, 0, rank, rank);
gsl_matrix_const_view QRZT11 = gsl_matrix_const_submatrix(QRZT, 0, 0, rank, rank);
/* form Q matrix */
gsl_matrix_set_identity(Q);
for (i = GSL_MIN (M, N); i-- > 0;)
{
gsl_vector_const_view h = gsl_matrix_const_subcolumn (QRZT, i, i, M - i);
gsl_matrix_view m = gsl_matrix_submatrix (Q, i, i, M - i, M - i);
gsl_vector_view work = gsl_matrix_subcolumn (R, 0, 0, M - i);
double ti = gsl_vector_get (tau_Q, i);
double * ptr = gsl_vector_ptr((gsl_vector *) &h.vector, 0);
double tmp = *ptr;
*ptr = 1.0;
gsl_linalg_householder_left (ti, &h.vector, &m.matrix, &work.vector);
*ptr = tmp;
}
/* form Z matrix */
gsl_matrix_set_identity(Z);
if (rank < N)
{
gsl_vector_view work = gsl_matrix_row(R, 0); /* temporary workspace, size N */
/* multiply I by Z from the right */
gsl_linalg_COD_matZ(QRZT, tau_Z, rank, Z, &work.vector);
}
/* copy rank-by-rank upper triangle of QRZT into R and zero the rest */
gsl_matrix_set_zero(R);
gsl_matrix_tricpy(CblasUpper, CblasNonUnit, &R11.matrix, &QRZT11.matrix);
return GSL_SUCCESS;
}
}
/*
gsl_linalg_COD_matZ
Multiply an M-by-N matrix A on the right by Z (N-by-N)
Inputs: QRZT - encoded COD matrix
tau_Z - Householder scalars for Z
rank - matrix rank
A - on input, M-by-N matrix
on output, A * Z
work - workspace of length M
*/
int
gsl_linalg_COD_matZ(const gsl_matrix * QRZT, const gsl_vector * tau_Z, const size_t rank,
gsl_matrix * A, gsl_vector * work)
{
const size_t M = A->size1;
const size_t N = A->size2;
if (tau_Z->size != GSL_MIN (QRZT->size1, QRZT->size2))
{
GSL_ERROR("tau_Z must be GSL_MIN(M,N)", GSL_EBADLEN);
}
else if (QRZT->size2 != N)
{
GSL_ERROR("QRZT must have N columns", GSL_EBADLEN);
}
else if (work->size != M)
{
GSL_ERROR("workspace must be length M", GSL_EBADLEN);
}
else
{
/* if rank == N, then Z = I and there is nothing to do */
if (rank < N)
{
size_t i;
for (i = rank; i > 0 && i--; )
{
gsl_vector_const_view h = gsl_matrix_const_subrow (QRZT, i, rank, N - rank);
gsl_matrix_view m = gsl_matrix_submatrix (A, 0, i, M, N - i);
double ti = gsl_vector_get (tau_Z, i);
cod_householder_mh (ti, &h.vector, &m.matrix, work);
}
}
return GSL_SUCCESS;
}
}
/*********************************************
* INTERNAL ROUTINES *
*********************************************/
/*
cod_RZ()
Perform RZ decomposition of an upper trapezoidal matrix,
A = [ A11 A12 ] = [ R 0 ] Z
where A is M-by-N with N >= M, A11 is M-by-M upper triangular,
and A12 is M-by-(N-M). On output, Z is stored as Householder
reflectors in the A12 portion of A,
Z = Z(1) Z(2) ... Z(M)
Inputs: A - M-by-N matrix with N >= M
On input, upper trapezoidal matrix [ A11 A12 ]
On output, A11 is overwritten by R (subdiagonal elements
are not touched), and A12 is overwritten by Z in packed storage
tau - (output) Householder scalars, size M
*/
static int
cod_RZ(gsl_matrix * A, gsl_vector * tau)
{
const size_t M = A->size1;
const size_t N = A->size2;
if (tau->size != M)
{
GSL_ERROR("tau has wrong size", GSL_EBADLEN);
}
else if (N < M)
{
GSL_ERROR("N must be >= M", GSL_EINVAL);
}
else if (M == N)
{
/* quick return */
gsl_vector_set_all(tau, 0.0);
return GSL_SUCCESS;
}
else
{
size_t k;
for (k = M; k > 0 && k--; )
{
double *alpha = gsl_matrix_ptr(A, k, k);
gsl_vector_view z = gsl_matrix_subrow(A, k, M, N - M);
double tauk;
/* compute Householder reflection to zero [ A(k,k) A(k,M+1:N) ] */
tauk = cod_householder_transform(alpha, &z.vector);
gsl_vector_set(tau, k, tauk);
if ((tauk != 0) && (k > 0))
{
gsl_vector_view w = gsl_vector_subvector(tau, 0, k);
gsl_matrix_view B = gsl_matrix_submatrix(A, 0, k, k, N - k);
cod_householder_mh(tauk, &z.vector, &B.matrix, &w.vector);
}
}
return GSL_SUCCESS;
}
}
static double
cod_householder_transform(double *alpha, gsl_vector * v)
{
double beta, tau;
double xnorm = gsl_blas_dnrm2(v);
if (xnorm == 0)
{
return 0.0; /* tau = 0 */
}
beta = - (*alpha >= 0.0 ? +1.0 : -1.0) * gsl_hypot(*alpha, xnorm);
tau = (beta - *alpha) / beta;
{
double s = (*alpha - beta);
if (fabs(s) > GSL_DBL_MIN)
{
gsl_blas_dscal (1.0 / s, v);
}
else
{
gsl_blas_dscal (GSL_DBL_EPSILON / s, v);
gsl_blas_dscal (1.0 / GSL_DBL_EPSILON, v);
}
*alpha = beta;
}
return tau;
}
/*
cod_householder_hv
Apply Householder reflection H = (I - tau*v*v') to vector v from the left,
w' = H * w
Inputs: tau - Householder scalar
v - Householder vector, size M
w - on input, w vector, size M
on output, H * w
Notes:
1) Based on LAPACK routine DLARZ
*/
static int
cod_householder_hv(const double tau, const gsl_vector * v, gsl_vector * w)
{
if (tau == 0)
{
return GSL_SUCCESS; /* H = I */
}
else
{
const size_t M = w->size;
const size_t L = v->size;
double w0 = gsl_vector_get(w, 0);
gsl_vector_view w1 = gsl_vector_subvector(w, M - L, L);
double d1, d;
/* d1 := v . w(M-L:M) */
gsl_blas_ddot(v, &w1.vector, &d1);
/* d := w(1) + v . w(M-L:M) */
d = w0 + d1;
/* w(1) = w(1) - tau * d */
gsl_vector_set(w, 0, w0 - tau * d);
/* w(M-L:M) = w(M-L:M) - tau * d * v */
gsl_blas_daxpy(-tau * d, v, &w1.vector);
return GSL_SUCCESS;
}
}
/*
cod_householder_mh
Apply Householder reflection H = (I - tau*v*v') to matrix A from the right
Inputs: tau - Householder scalar
v - Householder vector, size N-M
A - matrix, size M-by-N
work - workspace, size M
Notes:
1) Based on LAPACK routine DLARZ
*/
static int
cod_householder_mh(const double tau, const gsl_vector * v, gsl_matrix * A,
gsl_vector * work)
{
if (tau == 0)
{
return GSL_SUCCESS; /* H = I */
}
else
{
const size_t M = A->size1;
const size_t N = A->size2;
const size_t L = v->size;
gsl_vector_view A1 = gsl_matrix_subcolumn(A, 0, 0, M);
gsl_matrix_view C = gsl_matrix_submatrix(A, 0, N - L, M, L);
/* work(1:M) = A(1:M,1) */
gsl_vector_memcpy(work, &A1.vector);
/* work(1:M) = work(1:M) + A(1:M,M+1:N) * v(1:N-M) */
gsl_blas_dgemv(CblasNoTrans, 1.0, &C.matrix, v, 1.0, work);
/* A(1:M,1) = A(1:M,1) - tau * work(1:M) */
gsl_blas_daxpy(-tau, work, &A1.vector);
/* A(1:M,M+1:N) = A(1:M,M+1:N) - tau * work(1:M) * v(1:N-M)' */
gsl_blas_dger(-tau, work, v, &C.matrix);
return GSL_SUCCESS;
}
}
/*
cod_householder_Zvec
Multiply a vector by Z
Inputs: QRZT - encoded COD matrix
tau_Z - Householder scalars for Z
rank - matrix rank
v - on input, vector of length N
on output, Z * v
*/
static int
cod_householder_Zvec(const gsl_matrix * QRZT, const gsl_vector * tau_Z, const size_t rank,
gsl_vector * v)
{
const size_t M = QRZT->size1;
const size_t N = QRZT->size2;
if (tau_Z->size != GSL_MIN (M, N))
{
GSL_ERROR("tau_Z must be GSL_MIN(M,N)", GSL_EBADLEN);
}
else if (v->size != N)
{
GSL_ERROR("v must be length N", GSL_EBADLEN);
}
else
{
if (rank < N)
{
size_t i;
for (i = 0; i < rank; ++i)
{
gsl_vector_const_view h = gsl_matrix_const_subrow (QRZT, i, rank, N - rank);
gsl_vector_view w = gsl_vector_subvector (v, i, N - i);
double ti = gsl_vector_get (tau_Z, i);
cod_householder_hv(ti, &h.vector, &w.vector);
}
}
return GSL_SUCCESS;
}
}
/*
cod_trireg_solve()
This function computes the solution to the least squares system
[ R ] x = [ b ]
[ lambda*I ] [ 0 ]
where R is an N-by-N upper triangular matrix, lambda is a scalar parameter,
and b is a vector of length N. This is done by computing the QR factorization
[ R ] = W S^T
[ lambda*I ]
where S^T is upper triangular, and solving
S^T x = W^T [ b ]
[ 0 ]
Inputs: R - full rank upper triangular matrix; the diagonal
elements are modified but restored on output
lambda - scalar parameter lambda
b - right hand side vector b
S - workspace, N-by-N
x - (output) least squares solution of the system
work - workspace of length N
*/
static int
cod_trireg_solve (const gsl_matrix * R, const double lambda, const gsl_vector * b,
gsl_matrix * S, gsl_vector * x, gsl_vector * work)
{
const size_t N = R->size2;
gsl_vector_const_view diag = gsl_matrix_const_diagonal(R);
size_t i, j, k;
if (lambda <= 0.0)
{
GSL_ERROR("lambda must be positive", GSL_EINVAL);
}
/* copy R and b to preserve input and initialise S; store diag(R) in work */
gsl_matrix_transpose_tricpy(CblasUpper, CblasUnit, S, R);
gsl_vector_memcpy(work, &diag.vector);
gsl_vector_memcpy(x, b);
/* eliminate the diagonal matrix lambda*I using Givens rotations */
for (j = 0; j < N; j++)
{
double bj = 0.0;
gsl_matrix_set (S, j, j, lambda);
for (k = j + 1; k < N; k++)
{
gsl_matrix_set (S, k, k, 0.0);
}
/* the transformations to eliminate the row of lambda*I modify only a
single element of b beyond the first n, which is initially
zero */
for (k = j; k < N; k++)
{
/* determine a Givens rotation which eliminates the
appropriate element in the current row of lambda*I */
double sine, cosine;
double xk = gsl_vector_get (x, k);
double rkk = gsl_vector_get (work, k);
double skk = gsl_matrix_get (S, k, k);
if (skk == 0)
{
continue;
}
if (fabs (rkk) < fabs (skk))
{
double cotangent = rkk / skk;
sine = 0.5 / sqrt (0.25 + 0.25 * cotangent * cotangent);
cosine = sine * cotangent;
}
else
{
double tangent = skk / rkk;
cosine = 0.5 / sqrt (0.25 + 0.25 * tangent * tangent);
sine = cosine * tangent;
}
/* Compute the modified diagonal element of r and the
modified element of [b,0] */
{
double new_rkk = cosine * rkk + sine * skk;
double new_xk = cosine * xk + sine * bj;
bj = -sine * xk + cosine * bj;
gsl_vector_set(work, k, new_rkk);
gsl_matrix_set(S, k, k, new_rkk);
gsl_vector_set(x, k, new_xk);
}
/* Accumulate the transformation in the row of s */
for (i = k + 1; i < N; i++)
{
double sik = gsl_matrix_get (S, i, k);
double sii = gsl_matrix_get (S, i, i);
double new_sik = cosine * sik + sine * sii;
double new_sii = -sine * sik + cosine * sii;
gsl_matrix_set(S, i, k, new_sik);
gsl_matrix_set(S, i, i, new_sii);
}
}
}
/* solve: S^T x = rhs in place */
gsl_blas_dtrsv(CblasLower, CblasTrans, CblasNonUnit, S, x);
return GSL_SUCCESS;
}
|