1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/* linalg/condest.c
*
* Copyright (C) 2016 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
/*
* This module contains routines for estimating the condition number
* of matrices in the 1-norm. The algorithm is based on the paper,
*
* [1] N. J. Higham, "FORTRAN codes for estimating the one-norm of
* a real or complex matrix, with applications to condition estimation",
* ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
*/
static double condest_tri_norm1(CBLAS_UPLO_t Uplo, const gsl_matrix * A);
static int condest_tri_rcond(CBLAS_UPLO_t Uplo, const gsl_matrix * A,
double * rcond, gsl_vector * work);
static int condest_same_sign(const gsl_vector * x, const gsl_vector * y);
static int condest_invtriu(CBLAS_TRANSPOSE_t TransA, gsl_vector * x, void * params);
static int condest_invtril(CBLAS_TRANSPOSE_t TransA, gsl_vector * x, void * params);
int
gsl_linalg_tri_rcond(CBLAS_UPLO_t Uplo, const gsl_matrix * A, double * rcond, gsl_vector * work)
{
return condest_tri_rcond(Uplo, A, rcond, work);
}
/*
gsl_linalg_invnorm1()
Estimate the 1-norm of ||A^{-1}||, where A is a square
N-by-N matrix
Inputs: N - size of matrix
Ainvx - pointer to function which calculates:
x := A^{-1} x or x := A^{-t} x
params - parameters to pass to Ainvx
Ainvnorm - (output) estimate of ||A^{-1}||_1
work - workspace, length 3*N
*/
int
gsl_linalg_invnorm1(const size_t N,
int (* Ainvx)(CBLAS_TRANSPOSE_t TransA, gsl_vector * x, void * params),
void * params, double * Ainvnorm, gsl_vector * work)
{
if (work->size != 3 * N)
{
GSL_ERROR ("work vector must have length 3*N", GSL_EBADLEN);
}
else
{
const size_t maxit = 5;
gsl_vector_view x = gsl_vector_subvector(work, 0, N);
gsl_vector_view v = gsl_vector_subvector(work, N, N);
gsl_vector_view xi = gsl_vector_subvector(work, 2*N, N);
double gamma, gamma_old, temp;
size_t i, k;
for (i = 0; i < N; ++i)
gsl_vector_set(&x.vector, i, 1.0 / (double) N);
/* compute v = A^{-1} x */
gsl_vector_memcpy(&v.vector, &x.vector);
(*Ainvx)(CblasNoTrans, &v.vector, params);
/* gamma = ||v||_1 */
gamma = gsl_blas_dasum(&v.vector);
/* xi = sign(v) */
for (i = 0; i < N; ++i)
{
double vi = gsl_vector_get(&v.vector, i);
gsl_vector_set(&xi.vector, i, GSL_SIGN(vi));
}
/* x = A^{-t} xi */
gsl_vector_memcpy(&x.vector, &xi.vector);
(*Ainvx)(CblasTrans, &x.vector, params);
for (k = 0; k < maxit; ++k)
{
size_t j = (size_t) gsl_blas_idamax(&x.vector);
/* v := A^{-1} e_j */
gsl_vector_set_zero(&v.vector);
gsl_vector_set(&v.vector, j, 1.0);
(*Ainvx)(CblasNoTrans, &v.vector, params);
gamma_old = gamma;
gamma = gsl_blas_dasum(&v.vector);
/* check for repeated sign vector (algorithm has converged) */
if (condest_same_sign(&v.vector, &xi.vector) || (gamma < gamma_old))
break;
/* xi = sign(v) */
for (i = 0; i < N; ++i)
{
double vi = gsl_vector_get(&v.vector, i);
gsl_vector_set(&xi.vector, i, GSL_SIGN(vi));
}
/* x = A^{-t} sign(v) */
gsl_vector_memcpy(&x.vector, &xi.vector);
(*Ainvx)(CblasTrans, &x.vector, params);
}
temp = 1.0; /* (-1)^i */
for (i = 0; i < N; ++i)
{
double term = 1.0 + (double) i / (N - 1.0);
gsl_vector_set(&x.vector, i, temp * term);
temp = -temp;
}
/* x := A^{-1} x */
(*Ainvx)(CblasNoTrans, &x.vector, params);
temp = 2.0 * gsl_blas_dasum(&x.vector) / (3.0 * N);
if (temp > gamma)
{
gsl_vector_memcpy(&v.vector, &x.vector);
gamma = temp;
}
*Ainvnorm = gamma;
return GSL_SUCCESS;
}
}
static int
condest_tri_rcond(CBLAS_UPLO_t Uplo, const gsl_matrix * A, double * rcond, gsl_vector * work)
{
const size_t M = A->size1;
const size_t N = A->size2;
if (M != N)
{
GSL_ERROR ("matrix must be square", GSL_ENOTSQR);
}
else if (work->size != 3 * N)
{
GSL_ERROR ("work vector must have length 3*N", GSL_EBADLEN);
}
else
{
int status;
double Anorm = condest_tri_norm1(Uplo, A); /* ||A||_1 */
double Ainvnorm; /* ||A^{-1}||_1 */
*rcond = 0.0;
/* don't continue if matrix is singular */
if (Anorm == 0.0)
return GSL_SUCCESS;
/* estimate ||A^{-1}||_1 */
if (Uplo == CblasUpper)
status = gsl_linalg_invnorm1(N, condest_invtriu, (void *) A, &Ainvnorm, work);
else
status = gsl_linalg_invnorm1(N, condest_invtril, (void *) A, &Ainvnorm, work);
if (status)
return status;
if (Ainvnorm != 0.0)
*rcond = (1.0 / Anorm) / Ainvnorm;
return GSL_SUCCESS;
}
}
/* calculate 1 norm of triangular matrix */
static double
condest_tri_norm1(CBLAS_UPLO_t Uplo, const gsl_matrix * A)
{
const size_t N = A->size2;
double max = 0.0;
size_t i, j;
if (Uplo == CblasUpper)
{
for (j = 0; j < N; ++j)
{
double sum = 0.0;
for (i = 0; i <= j; ++i)
{
double Aij = gsl_matrix_get(A, i, j);
sum += fabs(Aij);
}
max = GSL_MAX(max, sum);
}
}
else
{
for (j = 0; j < N; ++j)
{
double sum = 0.0;
for (i = j; i < N; ++i)
{
double Aij = gsl_matrix_get(A, i, j);
sum += fabs(Aij);
}
max = GSL_MAX(max, sum);
}
}
return max;
}
/* return 1 if sign(x) = sign(y), 0 otherwise */
static int
condest_same_sign(const gsl_vector * x, const gsl_vector * y)
{
const size_t n = x->size;
size_t i;
for (i = 0; i < n; ++i)
{
double xi = gsl_vector_get(x, i);
double yi = gsl_vector_get(y, i);
if (GSL_SIGN(xi) != GSL_SIGN(yi))
return 0;
}
return 1;
}
/* x := A^{-1} x, A upper triangular */
static int
condest_invtriu(CBLAS_TRANSPOSE_t TransA, gsl_vector * x, void * params)
{
gsl_matrix * A = (gsl_matrix *) params;
return gsl_blas_dtrsv(CblasUpper, TransA, CblasNonUnit, A, x);
}
/* x := A^{-1} x, A lower triangular */
static int
condest_invtril(CBLAS_TRANSPOSE_t TransA, gsl_vector * x, void * params)
{
gsl_matrix * A = (gsl_matrix *) params;
return gsl_blas_dtrsv(CblasLower, TransA, CblasNonUnit, A, x);
}
#ifndef GSL_DISABLE_DEPRECATED
int
gsl_linalg_tri_upper_rcond(const gsl_matrix * A, double * rcond, gsl_vector * work)
{
int status = condest_tri_rcond(CblasUpper, A, rcond, work);
return status;
}
int
gsl_linalg_tri_lower_rcond(const gsl_matrix * A, double * rcond, gsl_vector * work)
{
int status = condest_tri_rcond(CblasLower, A, rcond, work);
return status;
}
#endif
|