1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/* linalg/exponential.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2007 Gerard Jungman, Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
/* Calculate the matrix exponential, following
* Moler + Van Loan, SIAM Rev. 20, 801 (1978).
*/
#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_mode.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_blas.h>
#include "gsl_linalg.h"
/* store one of the suggested choices for the
* Taylor series / square method from Moler + VanLoan
*/
struct moler_vanloan_optimal_suggestion
{
int k;
int j;
};
typedef struct moler_vanloan_optimal_suggestion mvl_suggestion_t;
/* table from Moler and Van Loan
* mvl_tab[gsl_mode_t][matrix_norm_group]
*/
static mvl_suggestion_t mvl_tab[3][6] =
{
/* double precision */
{
{ 5, 1 }, { 5, 4 }, { 7, 5 }, { 9, 7 }, { 10, 10 }, { 8, 14 }
},
/* single precision */
{
{ 2, 1 }, { 4, 0 }, { 7, 1 }, { 6, 5 }, { 5, 9 }, { 7, 11 }
},
/* approx precision */
{
{ 1, 0 }, { 3, 0 }, { 5, 1 }, { 4, 5 }, { 4, 8 }, { 2, 11 }
}
};
inline
static double
sup_norm(const gsl_matrix * A)
{
double min, max;
gsl_matrix_minmax(A, &min, &max);
return GSL_MAX_DBL(fabs(min), fabs(max));
}
static
mvl_suggestion_t
obtain_suggestion(const gsl_matrix * A, gsl_mode_t mode)
{
const unsigned int mode_prec = GSL_MODE_PREC(mode);
const double norm_A = sup_norm(A);
if(norm_A < 0.01) return mvl_tab[mode_prec][0];
else if(norm_A < 0.1) return mvl_tab[mode_prec][1];
else if(norm_A < 1.0) return mvl_tab[mode_prec][2];
else if(norm_A < 10.0) return mvl_tab[mode_prec][3];
else if(norm_A < 100.0) return mvl_tab[mode_prec][4];
else if(norm_A < 1000.0) return mvl_tab[mode_prec][5];
else
{
/* outside the table we simply increase the number
* of squarings, bringing the reduced matrix into
* the range of the table; this is obviously suboptimal,
* but that is the price paid for not having those extra
* table entries
*/
const double extra = log(1.01*norm_A/1000.0) / M_LN2;
const int extra_i = (unsigned int) ceil(extra);
mvl_suggestion_t s = mvl_tab[mode][5];
s.j += extra_i;
return s;
}
}
/* use series representation to calculate matrix exponential;
* this is used for small matrices; we use the sup_norm
* to measure the size of the terms in the expansion
*/
static void
matrix_exp_series(
const gsl_matrix * B,
gsl_matrix * eB,
int number_of_terms
)
{
int count;
gsl_matrix * temp = gsl_matrix_calloc(B->size1, B->size2);
/* init the Horner polynomial evaluation,
* eB = 1 + B/number_of_terms; we use
* eB to collect the partial results
*/
gsl_matrix_memcpy(eB, B);
gsl_matrix_scale(eB, 1.0/number_of_terms);
gsl_matrix_add_diagonal(eB, 1.0);
for(count = number_of_terms-1; count >= 1; --count)
{
/* mult_temp = 1 + B eB / count */
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, B, eB, 0.0, temp);
gsl_matrix_scale(temp, 1.0/count);
gsl_matrix_add_diagonal(temp, 1.0);
/* transfer partial result out of temp */
gsl_matrix_memcpy(eB, temp);
}
/* now eB holds the full result; we're done */
gsl_matrix_free(temp);
}
int
gsl_linalg_exponential_ss(
const gsl_matrix * A,
gsl_matrix * eA,
gsl_mode_t mode
)
{
if(A->size1 != A->size2)
{
GSL_ERROR("cannot exponentiate a non-square matrix", GSL_ENOTSQR);
}
else if(A->size1 != eA->size1 || A->size2 != eA->size2)
{
GSL_ERROR("exponential of matrix must have same dimension as matrix", GSL_EBADLEN);
}
else
{
int i;
const mvl_suggestion_t sugg = obtain_suggestion(A, mode);
const double divisor = exp(M_LN2 * sugg.j);
gsl_matrix * reduced_A = gsl_matrix_alloc(A->size1, A->size2);
/* decrease A by the calculated divisor */
gsl_matrix_memcpy(reduced_A, A);
gsl_matrix_scale(reduced_A, 1.0/divisor);
/* calculate exp of reduced matrix; store in eA as temp */
matrix_exp_series(reduced_A, eA, sugg.k);
/* square repeatedly; use reduced_A for scratch */
for(i = 0; i < sugg.j; ++i)
{
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, eA, eA, 0.0, reduced_A);
gsl_matrix_memcpy(eA, reduced_A);
}
gsl_matrix_free(reduced_A);
return GSL_SUCCESS;
}
}
|