File: hesstri.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (171 lines) | stat: -rw-r--r-- 5,541 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/* linalg/hesstri.c
 * 
 * Copyright (C) 2006, 2007 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <stdlib.h>
#include <math.h>

#include <config.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_blas.h>

/*
 * This module contains routines related to the Hessenberg-Triangular
 * reduction of two general real matrices
 *
 * See Golub & Van Loan, "Matrix Computations", 3rd ed, sec 7.7.4
 */

/*
gsl_linalg_hesstri_decomp()
  Perform a reduction to generalized upper Hessenberg form.
Given A and B, this function overwrites A with an upper Hessenberg
matrix H = U^T A V and B with an upper triangular matrix R = U^T B V
with U and V orthogonal.

See Golub & Van Loan, "Matrix Computations" (3rd ed) algorithm 7.7.1

Inputs: A    - real square matrix
        B    - real square matrix
        U    - (output) if non-null, U is stored here on output
        V    - (output) if non-null, V is stored here on output
        work - workspace (length n)

Return: success or error
*/

int
gsl_linalg_hesstri_decomp(gsl_matrix * A, gsl_matrix * B, gsl_matrix * U,
                          gsl_matrix * V, gsl_vector * work)
{
  const size_t N = A->size1;

  if ((N != A->size2) || (N != B->size1) || (N != B->size2))
    {
      GSL_ERROR ("Hessenberg-triangular reduction requires square matrices",
                 GSL_ENOTSQR);
    }
  else if (N != work->size)
    {
      GSL_ERROR ("length of workspace must match matrix dimension",
                 GSL_EBADLEN);
    }
  else
    {
      double cs, sn;          /* rotation parameters */
      size_t i, j;            /* looping */
      gsl_vector_view xv, yv; /* temporary views */

      /* B -> Q^T B = R (upper triangular) */
      gsl_linalg_QR_decomp(B, work);

      /* A -> Q^T A */
      gsl_linalg_QR_QTmat(B, work, A);

      /* initialize U and V if desired */

      if (U)
        {
          gsl_linalg_QR_unpack(B, work, U, B);
        }
      else
        {
          /* zero out lower triangle of B */
          for (j = 0; j < N - 1; ++j)
            {
              for (i = j + 1; i < N; ++i)
                gsl_matrix_set(B, i, j, 0.0);
            }
        }

      if (V)
        gsl_matrix_set_identity(V);

      if (N < 3)
        return GSL_SUCCESS; /* nothing more to do */

      /* reduce A and B */
      for (j = 0; j < N - 2; ++j)
        {
          for (i = N - 1; i >= (j + 2); --i)
            {
              /* step 1: rotate rows i - 1, i to kill A(i,j) */

              /*
               * compute G = [ CS SN ] so that G^t [ A(i-1,j) ] = [ * ]
               *             [-SN CS ]             [ A(i, j)  ]   [ 0 ]
               */
              gsl_linalg_givens(gsl_matrix_get(A, i - 1, j),
                                gsl_matrix_get(A, i, j),
                                &cs,
                                &sn);
              /* invert so drot() works correctly (G -> G^t) */
              sn = -sn;

              /* compute G^t A(i-1:i, j:n) */
              xv = gsl_matrix_subrow(A, i - 1, j, N - j);
              yv = gsl_matrix_subrow(A, i, j, N - j);
              gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);

              /* compute G^t B(i-1:i, i-1:n) */
              xv = gsl_matrix_subrow(B, i - 1, i - 1, N - i + 1);
              yv = gsl_matrix_subrow(B, i, i - 1, N - i + 1);
              gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);

              if (U)
                {
                  /* accumulate U: U -> U G */
                  xv = gsl_matrix_column(U, i - 1);
                  yv = gsl_matrix_column(U, i);
                  gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);
                }

              /* step 2: rotate columns i, i - 1 to kill B(i, i - 1) */

              gsl_linalg_givens(-gsl_matrix_get(B, i, i),
                                gsl_matrix_get(B, i, i - 1),
                                &cs,
                                &sn);
              /* invert so drot() works correctly (G -> G^t) */
              sn = -sn;

              /* compute B(1:i, i-1:i) G */
              xv = gsl_matrix_subcolumn(B, i - 1, 0, i + 1);
              yv = gsl_matrix_subcolumn(B, i, 0, i + 1);
              gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);

              /* apply to A(1:n, i-1:i) */
              xv = gsl_matrix_column(A, i - 1);
              yv = gsl_matrix_column(A, i);
              gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);

              if (V)
                {
                  /* accumulate V: V -> V G */
                  xv = gsl_matrix_column(V, i - 1);
                  yv = gsl_matrix_column(V, i);
                  gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);
                }
            }
        }

      return GSL_SUCCESS;
    }
} /* gsl_linalg_hesstri_decomp() */