File: householdercomplex.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (335 lines) | stat: -rw-r--r-- 9,375 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/* linalg/householdercomplex.c
 * 
 * Copyright (C) 2001, 2007 Brian Gough
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Computes a householder transformation matrix H such that
 *
 *       H' v = -/+ |v| e_1
 *
 * where e_1 is the first unit vector.  On exit the matrix H can be
 * computed from the return values (tau, v)
 *
 *       H = I - tau * w * w'
 *
 * where w = (1, v(2), ..., v(N)). The nonzero element of the result
 * vector -/+|v| e_1 is stored in v(1).
 *
 * Note that the matrix H' in the householder transformation is the
 * hermitian conjugate of H.  To compute H'v, pass the conjugate of
 * tau as the first argument to gsl_linalg_householder_hm() rather
 * than tau itself. See the LAPACK function CLARFG for details of this
 * convention.  */

#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_complex_math.h>

#include <gsl/gsl_linalg.h>

gsl_complex
gsl_linalg_complex_householder_transform (gsl_vector_complex * v)
{
  /* replace v[0:n-1] with a householder vector (v[0:n-1]) and
     coefficient tau that annihilate v[1:n-1] */

  const size_t n = v->size;
  
  if (n == 1)
    {
      gsl_complex alpha = gsl_vector_complex_get (v, 0) ;      
      double absa = gsl_complex_abs (alpha);
      double beta_r = - (GSL_REAL(alpha) >= 0 ? +1 : -1) * absa ;

      gsl_complex tau;

      if (beta_r == 0.0)
        {
          GSL_REAL(tau) = 0.0;
          GSL_IMAG(tau) = 0.0;
        }
      else 
        {
          GSL_REAL(tau) = (beta_r - GSL_REAL(alpha)) / beta_r ;
          GSL_IMAG(tau) = - GSL_IMAG(alpha) / beta_r ;

          {
            gsl_complex beta = gsl_complex_rect (beta_r, 0.0);
            gsl_vector_complex_set (v, 0, beta) ;
          }
        }
      
      return tau;
    }
  else
    { 
      gsl_complex tau ;
      double beta_r;

      gsl_vector_complex_view x = gsl_vector_complex_subvector (v, 1, n - 1) ; 
      gsl_complex alpha = gsl_vector_complex_get (v, 0) ;            
      double absa = gsl_complex_abs (alpha);
      double xnorm = gsl_blas_dznrm2 (&x.vector);
      
      if (xnorm == 0 && GSL_IMAG(alpha) == 0) 
        {
          gsl_complex zero = gsl_complex_rect(0.0, 0.0);
          return zero; /* tau = 0 */
        }
      
      beta_r = - (GSL_REAL(alpha) >= 0 ? +1 : -1) * hypot(absa, xnorm) ;

      GSL_REAL(tau) = (beta_r - GSL_REAL(alpha)) / beta_r ;
      GSL_IMAG(tau) = - GSL_IMAG(alpha) / beta_r ;

      {
        gsl_complex amb = gsl_complex_sub_real(alpha, beta_r);
        gsl_complex s = gsl_complex_inverse(amb);
        gsl_blas_zscal (s, &x.vector);
      }
      
      {
        gsl_complex beta = gsl_complex_rect (beta_r, 0.0);
        gsl_vector_complex_set (v, 0, beta) ;
      }
      
      return tau;
    }
}

int
gsl_linalg_complex_householder_hv (gsl_complex tau, const gsl_vector_complex * v, gsl_vector_complex *  w)
{
  const size_t N = v->size;

  if (GSL_REAL(tau) == 0.0 && GSL_IMAG(tau) == 0.0)
    return GSL_SUCCESS;

  if (N == 1)
    {
      gsl_complex w0 = gsl_vector_complex_get(w, 0);
      gsl_complex a, b;

      GSL_SET_COMPLEX(&a, 1.0 - GSL_REAL(tau), -GSL_IMAG(tau)); /* a = 1 - tau */
      b = gsl_complex_mul(a, w0);                               /* b = (1 - tau) w0 */
      gsl_vector_complex_set(w, 0, b);
    }
  else
    {
      /* compute z = v'w */

      gsl_complex z0 = gsl_vector_complex_get(w,0);
      gsl_complex z1, z;
      gsl_complex tz, ntz;
    
      gsl_vector_complex_const_view v1 = gsl_vector_complex_const_subvector(v, 1, N-1);
      gsl_vector_complex_view w1 = gsl_vector_complex_subvector(w, 1, N-1);

      gsl_blas_zdotc(&v1.vector, &w1.vector, &z1);
    
      z = gsl_complex_add (z0, z1);

      tz = gsl_complex_mul(tau, z);
      ntz = gsl_complex_negative (tz);

      /* compute w = w - tau * (v'w) * v   */

      {
        gsl_complex w0 = gsl_vector_complex_get(w, 0);
        gsl_complex w0ntz = gsl_complex_add (w0, ntz);
        gsl_vector_complex_set (w, 0, w0ntz);
      }

      gsl_blas_zaxpy(ntz, &v1.vector, &w1.vector);
    }

  return GSL_SUCCESS;
}

/*
gsl_linalg_complex_householder_left()
  Apply a Householder reflector

H = I - tau v v^H

to a M-by-N matrix A from the left

Inputs: tau  - Householder coefficient
        v    - Householder vector, length M
        A    - (input/output) M-by-N matrix on input; on output, H*A
        work - workspace, length N

Notes:
1) v(1) is modified but is restored on output

2) This routine replaces gsl_linalg_complex_householder_hm
*/

int
gsl_linalg_complex_householder_left(const gsl_complex tau, const gsl_vector_complex * v,
                                    gsl_matrix_complex * A, gsl_vector_complex * work)
{
  const size_t M = A->size1;
  const size_t N = A->size2;

  if (v->size != M)
    {
      GSL_ERROR ("matrix must match Householder vector dimensions", GSL_EBADLEN);
    }
  else if (work->size != N)
    {
      GSL_ERROR ("workspace must match matrix", GSL_EBADLEN);
    }
  else
    {
      gsl_complex v0, mtau;

      /* quick return */
      if (GSL_REAL(tau) == 0.0 && GSL_IMAG(tau) == 0.0)
        return GSL_SUCCESS;

      v0 = gsl_vector_complex_get(v, 0);
      v->data[0] = 1.0;
      v->data[1] = 0.0;

      /* work := A^H v */
      gsl_blas_zgemv(CblasConjTrans, GSL_COMPLEX_ONE, A, v, GSL_COMPLEX_ZERO, work);

      /* A := A - tau v work^H */
      GSL_REAL(mtau) = -GSL_REAL(tau);
      GSL_IMAG(mtau) = -GSL_IMAG(tau);
      gsl_blas_zgerc(mtau, v, work, A);

      v->data[0] = GSL_REAL(v0);
      v->data[1] = GSL_IMAG(v0);

      return GSL_SUCCESS;
    }
}

#ifndef GSL_DISABLE_DEPRECATED

int
gsl_linalg_complex_householder_hm (gsl_complex tau, const gsl_vector_complex * v, gsl_matrix_complex * A)
{
  /* applies a householder transformation v,tau to matrix m */

  size_t i, j;

  if (GSL_REAL(tau) == 0.0 && GSL_IMAG(tau) == 0.0)
    {
      return GSL_SUCCESS;
    }

  /* w = (v' A)^T */

  for (j = 0; j < A->size2; j++)
    {
      gsl_complex tauwj;
      gsl_complex wj = gsl_matrix_complex_get(A,0,j);  

      for (i = 1; i < A->size1; i++)  /* note, computed for v(0) = 1 above */
        {
          gsl_complex Aij = gsl_matrix_complex_get(A,i,j);
          gsl_complex vi = gsl_vector_complex_get(v,i);
          gsl_complex Av = gsl_complex_mul (Aij, gsl_complex_conjugate(vi));
          wj = gsl_complex_add (wj, Av);
        }

      tauwj = gsl_complex_mul (tau, wj);

      /* A = A - v w^T */
      
      {
        gsl_complex A0j = gsl_matrix_complex_get (A, 0, j);
        gsl_complex Atw = gsl_complex_sub (A0j, tauwj);
        /* store A0j - tau  * wj */
        gsl_matrix_complex_set (A, 0, j, Atw);
      }
      
      for (i = 1; i < A->size1; i++)
        {
          gsl_complex vi = gsl_vector_complex_get (v, i);
          gsl_complex tauvw = gsl_complex_mul(vi, tauwj);
          gsl_complex Aij = gsl_matrix_complex_get (A, i, j);
          gsl_complex Atwv = gsl_complex_sub (Aij, tauvw);
          /* store Aij - tau * vi * wj */
          gsl_matrix_complex_set (A, i, j, Atwv);
        }
    }
      
  return GSL_SUCCESS;
}

int
gsl_linalg_complex_householder_mh (gsl_complex tau, const gsl_vector_complex * v, gsl_matrix_complex * A)
{
  /* applies a householder transformation v,tau to matrix m on the right */

  size_t i, j;

  if (GSL_REAL(tau) == 0.0 && GSL_IMAG(tau) == 0.0)
    {
      return GSL_SUCCESS;
    }

  /* A -> A - A*tau*v*v^h */

  for (i = 0; i < A->size1; i++)
    {
      gsl_complex tauwi;
      gsl_complex Ai0 = gsl_matrix_complex_get (A, i, 0);
      gsl_complex wi = Ai0;

      /* compute w = A v */
      for (j = 1; j < A->size2; j++)  /* note, computed for v(0) = 1 above */
        {
          gsl_complex Aij = gsl_matrix_complex_get(A, i, j);
          gsl_complex vj = gsl_vector_complex_get(v, j);
          gsl_complex Av = gsl_complex_mul (Aij, vj);
          wi = gsl_complex_add (wi, Av);
        }

      tauwi = gsl_complex_mul (tau, wi);

      /* A = A - w v^H */
      
      {
        gsl_complex Atw = gsl_complex_sub (Ai0, tauwi);
        /* store Ai0 - tau  * wi */
        gsl_matrix_complex_set (A, i, 0, Atw);
      }
      
      for (j = 1; j < A->size2; j++)
        {
          gsl_complex vj = gsl_vector_complex_get (v, j);
          gsl_complex tauwv = gsl_complex_mul(gsl_complex_conjugate(vj), tauwi);
          gsl_complex Aij = gsl_matrix_complex_get (A, i, j);
          gsl_complex Atwv = gsl_complex_sub (Aij, tauwv);
          /* store Aij - tau * wi * conj(vj) */
          gsl_matrix_complex_set (A, i, j, Atwv);
        }
    }
      
  return GSL_SUCCESS;
}

#endif