File: ldlt.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (282 lines) | stat: -rw-r--r-- 7,383 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/* linalg/ldlt.c
 * 
 * Copyright (C) 2018 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* L D L^T decomposition of a symmetric positive semi-definite matrix */

#include <config.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>

static double ldlt_norm1(const gsl_matrix * A);
static int ldlt_Ainv(CBLAS_TRANSPOSE_t TransA, gsl_vector * x, void * params);

/*
gsl_linalg_ldlt_decomp()
  Perform L D L^T decomposition of a symmetric positive
semi-definite matrix using lower triangle

Inputs: A - (input) symmetric, positive semi-definite matrix
            (output) lower triangle contains L factor;
                     diagonal contains D

Return: success/error

Notes:
1) Based on algorithm 4.1.1 of Golub and Van Loan, Matrix Computations (4th ed).
2) The first subrow A(1, 2:end) is used as temporary workspace
3) The 1-norm ||A||_1 of the original matrix is stored in the upper right corner on output
*/

int
gsl_linalg_ldlt_decomp (gsl_matrix * A)
{
  const size_t M = A->size1;
  const size_t N = A->size2;

  if (M != N)
    {
      GSL_ERROR ("LDLT decomposition requires square matrix", GSL_ENOTSQR);
    }
  else
    {
      size_t i, j;
      double a00, anorm;
      gsl_vector_view work, v;

      /* check for quick return */
      if (N == 1)
        return GSL_SUCCESS;

      /* compute ||A||_1 */
      anorm = ldlt_norm1(A);

      /* special case first column */
      a00 = gsl_matrix_get(A, 0, 0);
      if (a00 == 0.0)
        {
          GSL_ERROR ("matrix is singular", GSL_EDOM);
        }

      v = gsl_matrix_subcolumn(A, 0, 1, N - 1);
      gsl_vector_scale(&v.vector, 1.0 / a00);

      /* use first subrow A(1, 2:end) as temporary workspace */
      work = gsl_matrix_subrow(A, 0, 1, N - 1);

      for (j = 1; j < N; ++j)
        {
          gsl_vector_view w = gsl_vector_subvector(&work.vector, 0, j);
          double ajj = gsl_matrix_get(A, j, j);
          double dval;

          for (i = 0; i < j; ++i)
            {
              double aii = gsl_matrix_get(A, i, i);
              double aji = gsl_matrix_get(A, j, i);
              gsl_vector_set(&w.vector, i, aji * aii);
            }

          v = gsl_matrix_subrow(A, j, 0, j); /* A(j,1:j-1) */
          gsl_blas_ddot(&v.vector, &w.vector, &dval);
          ajj -= dval;

          if (ajj == 0.0)
            {
              GSL_ERROR ("matrix is singular", GSL_EDOM);
            }

          gsl_matrix_set(A, j, j, ajj);

          if (j < N - 1)
            {
              double ajjinv = 1.0 / ajj;
              gsl_matrix_view m = gsl_matrix_submatrix(A, j + 1, 0, N - j - 1, j); /* A(j+1:n, 1:j-1) */
              v = gsl_matrix_subcolumn(A, j, j + 1, N - j - 1);                    /* A(j+1:n, j) */
              gsl_blas_dgemv(CblasNoTrans, -ajjinv, &m.matrix, &w.vector, ajjinv, &v.vector);
            }
        }

      /* save ||A||_1 in upper right corner */
      gsl_matrix_set(A, 0, N - 1, anorm);

      return GSL_SUCCESS;
    }
}

int
gsl_linalg_ldlt_solve (const gsl_matrix * LDLT,
                       const gsl_vector * b,
                       gsl_vector * x)
{
  if (LDLT->size1 != LDLT->size2)
    {
      GSL_ERROR ("LDLT matrix must be square", GSL_ENOTSQR);
    }
  else if (LDLT->size1 != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (LDLT->size2 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else
    {
      int status;

      /* copy x <- b */
      gsl_vector_memcpy (x, b);

      status = gsl_linalg_ldlt_svx(LDLT, x);

      return status;
    }
}

int
gsl_linalg_ldlt_svx (const gsl_matrix * LDLT,
                     gsl_vector * x)
{
  if (LDLT->size1 != LDLT->size2)
    {
      GSL_ERROR ("LDLT matrix must be square", GSL_ENOTSQR);
    }
  else if (LDLT->size2 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else
    {
      gsl_vector_const_view diag = gsl_matrix_const_diagonal(LDLT);

      /* solve for z using forward-substitution, L z = b */
      gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasUnit, LDLT, x);

      /* solve for y, D y = z */
      gsl_vector_div(x, &diag.vector);

      /* perform back-substitution, L^T x = y */
      gsl_blas_dtrsv (CblasLower, CblasTrans, CblasUnit, LDLT, x);

      return GSL_SUCCESS;
    }
}

int
gsl_linalg_ldlt_rcond (const gsl_matrix * LDLT, double * rcond,
                       gsl_vector * work)
{
  const size_t M = LDLT->size1;
  const size_t N = LDLT->size2;

  if (M != N)
    {
      GSL_ERROR ("LDLT matrix must be square", GSL_ENOTSQR);
    }
  else if (work->size != 3 * N)
    {
      GSL_ERROR ("work vector must have length 3*N", GSL_EBADLEN);
    }
  else
    {
      int status;
      double Anorm;    /* ||A||_1 */
      double Ainvnorm; /* ||A^{-1}||_1 */

      if (N == 1)
        Anorm = fabs(gsl_matrix_get(LDLT, 0, 0));
      else
        Anorm = gsl_matrix_get(LDLT, 0, N - 1);

      *rcond = 0.0;

      /* don't continue if matrix is singular */
      if (Anorm == 0.0)
        return GSL_SUCCESS;

      /* estimate ||A^{-1}||_1 */
      status = gsl_linalg_invnorm1(N, ldlt_Ainv, (void *) LDLT, &Ainvnorm, work);

      if (status)
        return status;

      if (Ainvnorm != 0.0)
        *rcond = (1.0 / Anorm) / Ainvnorm;

      return GSL_SUCCESS;
    }
}

/* compute 1-norm of symmetric matrix stored in lower triangle */
static double
ldlt_norm1(const gsl_matrix * A)
{
  const size_t N = A->size1;
  double max = 0.0;
  size_t i, j;

  for (j = 0; j < N; ++j)
    {
      gsl_vector_const_view v = gsl_matrix_const_subcolumn(A, j, j, N - j);
      double sum = gsl_blas_dasum(&v.vector);

      /* now add symmetric elements from above diagonal */
      for (i = 0; i < j; ++i)
        {
          double Aij = gsl_matrix_get(A, i, j);
          sum += fabs(Aij);
        }

      if (sum > max)
        max = sum;
    }

  return max;
}

/* x := A^{-1} x = A^{-t} x, A = L D L^T */
static int
ldlt_Ainv(CBLAS_TRANSPOSE_t TransA, gsl_vector * x, void * params)
{
  int status;
  gsl_matrix * A = (gsl_matrix * ) params;
  gsl_vector_const_view diag = gsl_matrix_const_diagonal(A);

  (void) TransA; /* unused parameter warning */

  /* compute L^{-1} x */
  status = gsl_blas_dtrsv(CblasLower, CblasNoTrans, CblasUnit, A, x);
  if (status)
    return status;

  /* compute D^{-1} x */
  gsl_vector_div(x, &diag.vector);

  /* compute L^{-t} x */
  status = gsl_blas_dtrsv(CblasLower, CblasTrans, CblasUnit, A, x);
  if (status)
    return status;

  return GSL_SUCCESS;
}