File: ldlt_band.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (350 lines) | stat: -rw-r--r-- 9,920 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/* linalg/ldlt_band.c
 * 
 * Copyright (C) 2018 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* L D L^T decomposition of a symmetric banded positive semi-definite matrix */

#include <config.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>

static double symband_norm1(const gsl_matrix * A);
static int ldlt_band_Ainv(CBLAS_TRANSPOSE_t TransA, gsl_vector * x, void * params);

/*
gsl_linalg_ldlt_band_decomp()
  L D L^T decomposition of a square symmetric positive semi-definite banded
matrix

Inputs: A - matrix in symmetric banded format, N-by-ndiag where N is the size of
            the matrix and ndiag is the number of nonzero diagonals.

Notes:
1) The matrix D is stored in the first column of A;
the first subdiagonal of L in the second column and so on.

2) If ndiag > 1, the 1-norm of A is stored in A(N,ndiag) on output

3) At each diagonal element, the matrix is factored as

A(j:end,j:end) = [ A11 A21^T ] = [ 1 0 ] [ alpha 0 ] [ 1 v^T ]
                 [ A21 A22   ]   [ v L ] [   0   D ] [ 0 L^T ]

where:

alpha = A(j,j)
v = A(j+1:end, j) / alpha
A22 = L D L^T + alpha v v^T

So we start at A(1,1) and work right. Pseudo-code is:

loop j = 1, ..., N
  alpha = A(j,j)
  A(j+1:end, j) := A(j+1:end, j) / alpha     (DSCAL)
  A(j+1:end, j+1:end) -= alpha v v^T         (DSYR)

Due to the banded structure, v has at most p non-zero elements, where
p is the lower bandwidth
*/

int
gsl_linalg_ldlt_band_decomp(gsl_matrix * A)
{
  const size_t N = A->size1;     /* size of matrix */
  const size_t ndiag = A->size2; /* number of diagonals in band, including main diagonal */

  if (ndiag > N)
    {
      GSL_ERROR ("invalid matrix dimensions", GSL_EBADLEN);
    }
  else
    {
      const size_t p = ndiag - 1; /* lower bandwidth */
      const int kld = (int) GSL_MAX(1, p);
      double Anorm;
      size_t j;

      /* check for quick return */
      if (ndiag == 1)
        return GSL_SUCCESS;

      /*
       * calculate 1-norm of A and store in lower right of matrix, which is not accessed
       * by rest of routine. gsl_linalg_ldlt_band_rcond() will use this later. If
       * A is diagonal, there is no empty slot to store the 1-norm, so the rcond routine
       * will have to compute it.
       */
      Anorm = symband_norm1(A);
      gsl_matrix_set(A, N - 1, p, Anorm);

      for (j = 0; j < N - 1; ++j)
        {
          double ajj = gsl_matrix_get(A, j, 0);
          size_t lenv;

          if (ajj == 0.0)
            {
              GSL_ERROR("matrix is singular", GSL_EDOM);
            }

          /* number of elements in v, which will normally be p, unless we
           * are in lower right corner of matrix */
          lenv = GSL_MIN(p, N - j - 1);

          if (lenv > 0)
            {
              gsl_vector_view v = gsl_matrix_subrow(A, j, 1, lenv);
              gsl_matrix_view m = gsl_matrix_submatrix(A, j + 1, 0, lenv, lenv);

              gsl_blas_dscal(1.0 / ajj, &v.vector);

              m.matrix.tda = kld;
              gsl_blas_dsyr(CblasUpper, -ajj, &v.vector, &m.matrix);
            }
        }

      return GSL_SUCCESS;
    }
}

int
gsl_linalg_ldlt_band_solve (const gsl_matrix * LDLT,
                            const gsl_vector * b,
                            gsl_vector * x)
{
  if (LDLT->size1 != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (LDLT->size1 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else
    {
      int status;

      /* copy x <- b */
      gsl_vector_memcpy (x, b);

      status = gsl_linalg_ldlt_band_svx(LDLT, x);

      return status;
    }
}

int
gsl_linalg_ldlt_band_svx (const gsl_matrix * LDLT, gsl_vector * x)
{
  if (LDLT->size1 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else
    {
      gsl_vector_const_view diag = gsl_matrix_const_column(LDLT, 0);

      /* solve for z using forward-substitution, L z = b */
      cblas_dtbsv(CblasColMajor, CblasLower, CblasNoTrans, CblasUnit,
                  (int) LDLT->size1, (int) (LDLT->size2 - 1), LDLT->data, LDLT->tda,
                  x->data, x->stride);

      /* solve for y, D y = z */
      gsl_vector_div(x, &diag.vector);

      /* perform back-substitution, L^T x = y */
      cblas_dtbsv(CblasColMajor, CblasLower, CblasTrans, CblasUnit,
                  (int) LDLT->size1, (int) (LDLT->size2 - 1), LDLT->data, LDLT->tda,
                  x->data, x->stride);

      return GSL_SUCCESS;
    }
}

/*
gsl_linalg_ldlt_band_unpack()
  Unpack symmetric banded format matrix LDLT into
larger matrix L and diagonal vector D
*/

int
gsl_linalg_ldlt_band_unpack (const gsl_matrix * LDLT, gsl_matrix * L, gsl_vector * D)
{
  const size_t N = LDLT->size1;

  if (N != L->size1)
    {
      GSL_ERROR("L matrix does not match LDLT dimensions", GSL_EBADLEN);
    }
  else if (L->size1 != L->size2)
    {
      GSL_ERROR("L matrix is not square", GSL_ENOTSQR);
    }
  else if (N != D->size)
    {
      GSL_ERROR("D vector does not match LDLT dimensions", GSL_EBADLEN);
    }
  else
    {
      const size_t p = LDLT->size2 - 1; /* lower bandwidth */
      gsl_vector_const_view diag = gsl_matrix_const_column(LDLT, 0);
      gsl_vector_view diagL = gsl_matrix_diagonal(L);
      size_t i;

      /* copy diagonal entries */
      gsl_vector_memcpy(D, &diag.vector);

      /* copy subdiagonals into L */
      for (i = 1; i <= p; ++i)
        {
          gsl_vector_const_view v = gsl_matrix_const_subcolumn(LDLT, i, 0, N - i);
          gsl_vector_view w = gsl_matrix_subdiagonal(L, i);
          gsl_vector_memcpy(&w.vector, &v.vector);
        }

      /* set main diagonal of L */
      gsl_vector_set_all(&diagL.vector, 1.0);

      /* zero out remaining subdiagonals */
      for (i = p + 1; i < N; ++i)
        {
          gsl_vector_view w = gsl_matrix_subdiagonal(L, i);
          gsl_vector_set_zero(&w.vector);
        }

      return GSL_SUCCESS;
    }
}

int
gsl_linalg_ldlt_band_rcond (const gsl_matrix * LDLT, double * rcond, gsl_vector * work)
{
  const size_t N = LDLT->size1;

  if (work->size != 3 * N)
    {
      GSL_ERROR ("work vector must have length 3*N", GSL_EBADLEN);
    }
  else
    {
      int status;
      const size_t ndiag = LDLT->size2;
      double Anorm;    /* ||A||_1 */
      double Ainvnorm; /* ||A^{-1}||_1 */

      if (ndiag == 1)
        {
          /* diagonal matrix, compute 1-norm since it has not been stored */
          Anorm = symband_norm1(LDLT);
        }
      else
        {
          /* 1-norm is stored in A(N, ndiag) by gsl_linalg_ldlt_band_decomp() */
          Anorm = gsl_matrix_get(LDLT, N - 1, ndiag - 1);
        }

      *rcond = 0.0;

      /* return if matrix is singular */
      if (Anorm == 0.0)
        return GSL_SUCCESS;

      status = gsl_linalg_invnorm1(N, ldlt_band_Ainv, (void *) LDLT, &Ainvnorm, work);
      if (status)
        return status;

      if (Ainvnorm != 0.0)
        *rcond = (1.0 / Anorm) / Ainvnorm;

      return GSL_SUCCESS;
    }
}

/* compute 1-norm of symmetric banded matrix */
static double
symband_norm1(const gsl_matrix * A)
{
  const size_t N = A->size1;
  const size_t ndiag = A->size2; /* number of diagonals in band, including main diagonal */
  double value;

  if (ndiag == 1)
    {
      /* diagonal matrix */
      gsl_vector_const_view v = gsl_matrix_const_column(A, 0);
      CBLAS_INDEX_t idx = gsl_blas_idamax(&v.vector);
      value = gsl_vector_get(&v.vector, idx);
    }
  else
    {
      size_t j;

      value = 0.0;
      for (j = 0; j < N; ++j)
        {
          size_t ncol = GSL_MIN(ndiag, N - j); /* number of elements in column j below and including main diagonal */
          gsl_vector_const_view v = gsl_matrix_const_subrow(A, j, 0, ncol);
          double sum = gsl_blas_dasum(&v.vector);
          size_t k, l;

          /* sum now contains the absolute sum of elements below and including main diagonal for column j; we
           * have to add the symmetric elements above the diagonal */
          k = j;
          l = 1;
          while (k > 0 && l < ndiag)
            {
              double Akl = gsl_matrix_get(A, --k, l++);
              sum += fabs(Akl);
            }

          value = GSL_MAX(value, sum);
        }
    }

  return value;
}

/* x := A^{-1} x = A^{-t} x, A = L D L^T */
static int
ldlt_band_Ainv(CBLAS_TRANSPOSE_t TransA, gsl_vector * x, void * params)
{
  gsl_matrix * LDLT = (gsl_matrix * ) params;
  gsl_vector_const_view diag = gsl_matrix_const_column(LDLT, 0);

  (void) TransA; /* unused parameter warning */

  /* compute x := L^{-1} x */
  cblas_dtbsv(CblasColMajor, CblasLower, CblasNoTrans, CblasUnit,
              (int) LDLT->size1, (int) (LDLT->size2 - 1), LDLT->data, LDLT->tda,
              x->data, x->stride);

  /* compute x := D^{-1} x */
  gsl_vector_div(x, &diag.vector);

  /* compute x := L^{-T} x */
  cblas_dtbsv(CblasColMajor, CblasLower, CblasTrans, CblasUnit,
              (int) LDLT->size1, (int) (LDLT->size2 - 1), LDLT->data, LDLT->tda,
              x->data, x->stride);

  return GSL_SUCCESS;
}