1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
/* linalg/lu.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Gerard Jungman, Brian Gough
* Copyright (C) 2019, 2021 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_permute_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
#include "recurse.h"
static int LU_decomp_L2 (gsl_matrix * A, gsl_vector_uint * ipiv);
static int LU_decomp_L3 (gsl_matrix * A, gsl_vector_uint * ipiv);
static int singular (const gsl_matrix * LU);
static int apply_pivots(gsl_matrix * A, const gsl_vector_uint * ipiv);
/* Factorise a general N x N matrix A into,
*
* P A = L U
*
* where P is a permutation matrix, L is unit lower triangular and U
* is upper triangular.
*
* L is stored in the strict lower triangular part of the input
* matrix. The diagonal elements of L are unity and are not stored.
*
* U is stored in the diagonal and upper triangular part of the
* input matrix.
*
* P is stored in the permutation p. Column j of P is column k of the
* identity matrix, where k = permutation->data[j]
*
* signum gives the sign of the permutation, (-1)^n, where n is the
* number of interchanges in the permutation.
*
* See Golub & Van Loan, Matrix Computations, Algorithm 3.4.1 (Gauss
* Elimination with Partial Pivoting).
*/
int
gsl_linalg_LU_decomp (gsl_matrix * A, gsl_permutation * p, int *signum)
{
const size_t M = A->size1;
if (p->size != M)
{
GSL_ERROR ("permutation length must match matrix size1", GSL_EBADLEN);
}
else
{
int status;
const size_t N = A->size2;
const size_t minMN = GSL_MIN(M, N);
gsl_vector_uint * ipiv = gsl_vector_uint_alloc(minMN);
gsl_matrix_view AL = gsl_matrix_submatrix(A, 0, 0, M, minMN);
size_t i;
status = LU_decomp_L3 (&AL.matrix, ipiv);
/* process remaining right matrix */
if (M < N)
{
gsl_matrix_view AR = gsl_matrix_submatrix(A, 0, M, M, N - M);
/* apply pivots to AR */
apply_pivots(&AR.matrix, ipiv);
/* AR = AL^{-1} AR */
gsl_blas_dtrsm(CblasLeft, CblasLower, CblasNoTrans, CblasUnit, 1.0, &AL.matrix, &AR.matrix);
}
/* convert ipiv array to permutation */
gsl_permutation_init(p);
*signum = 1;
for (i = 0; i < minMN; ++i)
{
unsigned int pivi = gsl_vector_uint_get(ipiv, i);
if (p->data[pivi] != p->data[i])
{
size_t tmp = p->data[pivi];
p->data[pivi] = p->data[i];
p->data[i] = tmp;
*signum = -(*signum);
}
}
gsl_vector_uint_free(ipiv);
return status;
}
}
/*
LU_decomp_L2
LU decomposition with partial pivoting using Level 2 BLAS
Inputs: A - on input, matrix to be factored; on output, L and U factors
ipiv - (output) array containing row swaps
Notes:
1) Based on LAPACK DGETF2
Return: GSL_SUCCESS if successful; otherwise a positive integer k
in [1,GSL_MIN(M,N)] indicating that U(k,k) is zero and therefore singular;
in this case, the LU factorization is still completed
*/
static int
LU_decomp_L2 (gsl_matrix * A, gsl_vector_uint * ipiv)
{
int status = GSL_SUCCESS;
const size_t M = A->size1;
const size_t N = A->size2;
const size_t minMN = GSL_MIN(M, N);
if (ipiv->size != minMN)
{
GSL_ERROR ("ipiv length must equal MIN(M,N)", GSL_EBADLEN);
}
else
{
size_t i, j;
for (j = 0; j < minMN; ++j)
{
/* find maximum in the j-th column */
gsl_vector_view v = gsl_matrix_subcolumn(A, j, j, M - j);
size_t j_pivot = j + gsl_blas_idamax(&v.vector);
double Ajpj = gsl_matrix_get(A, j_pivot, j);
gsl_vector_view v1, v2;
gsl_vector_uint_set(ipiv, j, j_pivot);
if (Ajpj != 0.0)
{
if (j_pivot != j)
{
/* swap rows j and j_pivot */
v1 = gsl_matrix_row(A, j);
v2 = gsl_matrix_row(A, j_pivot);
gsl_blas_dswap(&v1.vector, &v2.vector);
}
if (j < M - 1)
{
double Ajj = gsl_matrix_get(A, j, j);
if (fabs(Ajj) >= GSL_DBL_MIN)
{
v1 = gsl_matrix_subcolumn(A, j, j + 1, M - j - 1);
gsl_blas_dscal(1.0 / Ajj, &v1.vector);
}
else
{
for (i = 1; i < M - j; ++i)
{
double * ptr = gsl_matrix_ptr(A, j + i, j);
*ptr /= Ajj;
}
}
}
}
else
{
status = (int) j + 1;
}
if (j < minMN - 1)
{
gsl_matrix_view A22 = gsl_matrix_submatrix(A, j + 1, j + 1, M - j - 1, N - j - 1);
v1 = gsl_matrix_subcolumn(A, j, j + 1, M - j - 1);
v2 = gsl_matrix_subrow(A, j, j + 1, N - j - 1);
gsl_blas_dger(-1.0, &v1.vector, &v2.vector, &A22.matrix);
}
}
return status;
}
}
/*
LU_decomp_L3
LU decomposition with partial pivoting using Level 3 BLAS
Inputs: A - on input, matrix to be factored; on output, L and U factors
ipiv - (output) array containing row swaps
Notes:
1) Based on ReLAPACK DGETRF
*/
static int
LU_decomp_L3 (gsl_matrix * A, gsl_vector_uint * ipiv)
{
const size_t M = A->size1;
const size_t N = A->size2;
if (M < N)
{
GSL_ERROR ("matrix must have M >= N", GSL_EBADLEN);
}
else if (ipiv->size != GSL_MIN(M, N))
{
GSL_ERROR ("ipiv length must equal MIN(M,N)", GSL_EBADLEN);
}
else if (N <= CROSSOVER_LU)
{
/* use Level 2 algorithm */
return LU_decomp_L2(A, ipiv);
}
else
{
/*
* partition matrix:
*
* N1 N2
* N1 [ A11 A12 ]
* M2 [ A21 A22 ]
*
* and
* N1 N2
* M [ AL AR ]
*/
int status;
const size_t N1 = GSL_LINALG_SPLIT(N);
const size_t N2 = N - N1;
const size_t M2 = M - N1;
gsl_matrix_view A11 = gsl_matrix_submatrix(A, 0, 0, N1, N1);
gsl_matrix_view A12 = gsl_matrix_submatrix(A, 0, N1, N1, N2);
gsl_matrix_view A21 = gsl_matrix_submatrix(A, N1, 0, M2, N1);
gsl_matrix_view A22 = gsl_matrix_submatrix(A, N1, N1, M2, N2);
gsl_matrix_view AL = gsl_matrix_submatrix(A, 0, 0, M, N1);
gsl_matrix_view AR = gsl_matrix_submatrix(A, 0, N1, M, N2);
/*
* partition ipiv = [ ipiv1 ] N1
* [ ipiv2 ] N2
*/
gsl_vector_uint_view ipiv1 = gsl_vector_uint_subvector(ipiv, 0, N1);
gsl_vector_uint_view ipiv2 = gsl_vector_uint_subvector(ipiv, N1, N2);
size_t i;
/* recursion on (AL, ipiv1) */
status = LU_decomp_L3(&AL.matrix, &ipiv1.vector);
if (status)
return status;
/* apply ipiv1 to AR */
apply_pivots(&AR.matrix, &ipiv1.vector);
/* A12 = A11^{-1} A12 */
gsl_blas_dtrsm(CblasLeft, CblasLower, CblasNoTrans, CblasUnit, 1.0, &A11.matrix, &A12.matrix);
/* A22 = A22 - A21 * A12 */
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, -1.0, &A21.matrix, &A12.matrix, 1.0, &A22.matrix);
/* recursion on (A22, ipiv2) */
status = LU_decomp_L3(&A22.matrix, &ipiv2.vector);
if (status)
return status;
/* apply pivots to A21 */
apply_pivots(&A21.matrix, &ipiv2.vector);
/* shift pivots */
for (i = 0; i < N2; ++i)
{
unsigned int * ptr = gsl_vector_uint_ptr(&ipiv2.vector, i);
*ptr += N1;
}
return GSL_SUCCESS;
}
}
int
gsl_linalg_LU_solve (const gsl_matrix * LU, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x)
{
if (LU->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
}
else if (LU->size1 != p->size)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else if (LU->size1 != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (LU->size2 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else if (singular (LU))
{
GSL_ERROR ("matrix is singular", GSL_EDOM);
}
else
{
int status;
/* copy x <- b */
gsl_vector_memcpy (x, b);
/* solve for x */
status = gsl_linalg_LU_svx (LU, p, x);
return status;
}
}
int
gsl_linalg_LU_svx (const gsl_matrix * LU, const gsl_permutation * p, gsl_vector * x)
{
if (LU->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
}
else if (LU->size1 != p->size)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else if (LU->size1 != x->size)
{
GSL_ERROR ("matrix size must match solution/rhs size", GSL_EBADLEN);
}
else if (singular (LU))
{
GSL_ERROR ("matrix is singular", GSL_EDOM);
}
else
{
/* apply permutation to RHS */
gsl_permute_vector (p, x);
/* solve for c using forward-substitution, L c = P b */
gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasUnit, LU, x);
/* perform back-substitution, U x = c */
gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LU, x);
return GSL_SUCCESS;
}
}
int
gsl_linalg_LU_refine (const gsl_matrix * A, const gsl_matrix * LU, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x, gsl_vector * work)
{
if (A->size1 != A->size2)
{
GSL_ERROR ("matrix a must be square", GSL_ENOTSQR);
}
else if (LU->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
}
else if (A->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be decomposition of a", GSL_ENOTSQR);
}
else if (LU->size1 != p->size)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else if (LU->size1 != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (LU->size1 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else if (LU->size1 != work->size)
{
GSL_ERROR ("matrix size must match workspace size", GSL_EBADLEN);
}
else if (singular (LU))
{
GSL_ERROR ("matrix is singular", GSL_EDOM);
}
else
{
int status;
/* compute residual = (A * x - b) */
gsl_vector_memcpy (work, b);
gsl_blas_dgemv (CblasNoTrans, 1.0, A, x, -1.0, work);
/* find correction, delta = - (A^-1) * residual, and apply it */
status = gsl_linalg_LU_svx (LU, p, work);
gsl_blas_daxpy (-1.0, work, x);
return status;
}
}
int
gsl_linalg_LU_invert (const gsl_matrix * LU, const gsl_permutation * p, gsl_matrix * inverse)
{
if (LU->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
}
else if (LU->size1 != p->size)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else if (inverse->size1 != LU->size1 || inverse->size2 != LU->size2)
{
GSL_ERROR ("inverse matrix must match LU matrix dimensions", GSL_EBADLEN);
}
else
{
gsl_matrix_memcpy(inverse, LU);
return gsl_linalg_LU_invx (inverse, p);
}
}
int
gsl_linalg_LU_invx (gsl_matrix * LU, const gsl_permutation * p)
{
if (LU->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
}
else if (LU->size1 != p->size)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else if (singular (LU))
{
GSL_ERROR ("matrix is singular", GSL_EDOM);
}
else
{
int status;
const size_t N = LU->size1;
size_t i;
/* compute U^{-1} */
status = gsl_linalg_tri_invert(CblasUpper, CblasNonUnit, LU);
if (status)
return status;
/* compute L^{-1} */
status = gsl_linalg_tri_invert(CblasLower, CblasUnit, LU);
if (status)
return status;
/* compute U^{-1} L^{-1} */
status = gsl_linalg_tri_UL(LU);
if (status)
return status;
/* apply permutation to columns of A^{-1} */
for (i = 0; i < N; ++i)
{
gsl_vector_view v = gsl_matrix_row(LU, i);
gsl_permute_vector_inverse(p, &v.vector);
}
return GSL_SUCCESS;
}
}
double
gsl_linalg_LU_det (gsl_matrix * LU, int signum)
{
size_t i, n = LU->size1;
double det = (double) signum;
for (i = 0; i < n; i++)
{
det *= gsl_matrix_get (LU, i, i);
}
return det;
}
double
gsl_linalg_LU_lndet (gsl_matrix * LU)
{
size_t i, n = LU->size1;
double lndet = 0.0;
for (i = 0; i < n; i++)
{
lndet += log (fabs (gsl_matrix_get (LU, i, i)));
}
return lndet;
}
int
gsl_linalg_LU_sgndet (gsl_matrix * LU, int signum)
{
size_t i, n = LU->size1;
int s = signum;
for (i = 0; i < n; i++)
{
double u = gsl_matrix_get (LU, i, i);
if (u < 0)
{
s *= -1;
}
else if (u == 0)
{
s = 0;
break;
}
}
return s;
}
static int
singular (const gsl_matrix * LU)
{
size_t i, n = LU->size1;
for (i = 0; i < n; i++)
{
double u = gsl_matrix_get (LU, i, i);
if (u == 0) return 1;
}
return 0;
}
static int
apply_pivots(gsl_matrix * A, const gsl_vector_uint * ipiv)
{
if (A->size1 < ipiv->size)
{
GSL_ERROR("matrix does not match pivot vector", GSL_EBADLEN);
}
else
{
size_t i;
for (i = 0; i < ipiv->size; ++i)
{
size_t pi = gsl_vector_uint_get(ipiv, i);
if (i != pi)
{
/* swap rows i and pi */
gsl_vector_view v1 = gsl_matrix_row(A, i);
gsl_vector_view v2 = gsl_matrix_row(A, pi);
gsl_blas_dswap(&v1.vector, &v2.vector);
}
}
return GSL_SUCCESS;
}
}
|