File: mcholesky.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (271 lines) | stat: -rw-r--r-- 6,979 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/* Modified Cholesky Decomposition
 *
 * Copyright (C) 2016 Patrick Alken
 *
 * This is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 3, or (at your option) any
 * later version.
 *
 * This source is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 */

#include <config.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_permutation.h>
#include <gsl/gsl_permute_vector.h>

#include "cholesky_common.c"

/*
 * This module contains routines related to the Modified Cholesky
 * Decomposition, which factors a symmetric indefinite matrix A as
 *
 * P (A + E) P^T = L D L^T
 *
 * where:
 * P: permutation matrix
 * E: small, non-negative diagonal matrix
 * L: unit lower triangular matrix
 * D: strictly positive diagonal matrix
 *
 * These routines follow these works closely:
 *
 * [1] P. E. Gill, W. Murray, M. H. Wright, Practical Optimization,
 *     Academic Press, 1981.
 *
 * [2] Dennis and Schnabel, Numerical Methods for Unconstrained Optimization
 *     and Nonlinear Equations, SIAM, 1996
 */

static size_t mcholesky_maxabs(const gsl_vector * v, double *maxabs);

/*
gsl_linalg_mcholesky_decomp()
  Perform Pivoted Modified Cholesky LDLT decomposition of a symmetric positive
indefinite matrix:

P (A + E) P^T = L D L^T

Inputs: A - (input) symmetric, positive indefinite matrix,
                    stored in lower triangle
            (output) lower triangle contains L; diagonal contains D
        p - (output) permutation matrix P
        E - (output) perturbation matrix E

Return: success/error

Notes:
1) Based on algorithm 4.2.2 (Outer Product LDLT with Pivoting) of
Golub and Van Loan, Matrix Computations (4th ed), with modifications
described in [1] and [2]

2) E can be set to NULL if not required
*/

int
gsl_linalg_mcholesky_decomp (gsl_matrix * A, gsl_permutation * p,
                             gsl_vector * E)
{
  const size_t N = A->size1;

  if (N != A->size2)
    {
      GSL_ERROR("LDLT decomposition requires square matrix", GSL_ENOTSQR);
    }
  else if (p->size != N)
    {
      GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
    }
  else
    {
      const double delta = GSL_DBL_EPSILON;
      double beta;
      double gamma = 0.0;
      double xi = 0.0;
      gsl_vector_view diag = gsl_matrix_diagonal(A);
      size_t i, j;

      /* save a copy of A in upper triangle (for later rcond calculation) */
      gsl_matrix_transpose_tricpy(CblasLower, CblasUnit, A, A);

      gsl_permutation_init(p);

      /* compute:
       * gamma = max | A_{ii} |
       * xi = max_{i \ne j} | A_{ij} |
       */
      for (i = 0; i < N; ++i)
        {
          double aii = gsl_matrix_get(A, i, i);

          gamma = GSL_MAX(gamma, fabs(aii));

          for (j = 0; j < i; ++j)
            {
              double aij = gsl_matrix_get(A, i, j);
              xi = GSL_MAX(xi, fabs(aij));
            }
        }

      /* compute:
       * beta = sqrt[ max { gamma, xi/nu, eps } ]
       * with: nu = max{ sqrt(N^2 - 1), 1 }
       */
      if (N == 1)
        {
          beta = GSL_MAX(GSL_MAX(gamma, xi), GSL_DBL_EPSILON);
        }
      else
        {
          double nu = sqrt(N*N - 1.0);
          beta = GSL_MAX(GSL_MAX(gamma, xi / nu), GSL_DBL_EPSILON);
        }

      beta = sqrt(beta);

      for (j = 0; j < N; ++j)
        {
          double ajj, thetaj, u, alpha, alphainv;
          gsl_vector_view w;
          size_t q;

          /* compute q = max_idx { A_jj, ..., A_nn } */
          w = gsl_vector_subvector(&diag.vector, j, N - j);
          q = mcholesky_maxabs(&w.vector, NULL) + j;

          gsl_permutation_swap(p, q, j);
          cholesky_swap_rowcol(A, q, j);

          /* theta_j = max_{j+1 <= i <= n} |A_{ij}| */
          if (j < N - 1)
            {
              w = gsl_matrix_subcolumn(A, j, j + 1, N - j - 1);
              mcholesky_maxabs(&w.vector, &thetaj);
            }
          else
            {
              thetaj = 0.0;
            }

          u = thetaj / beta;

          /* compute alpha = d_j */
          ajj = gsl_matrix_get(A, j, j);
          alpha = GSL_MAX(GSL_MAX(delta, fabs(ajj)), u * u);
          alphainv = 1.0 / alpha;

          if (j < N - 1)
            {
              /* v = A(j+1:n, j) */
              gsl_vector_view v = gsl_matrix_subcolumn(A, j, j + 1, N - j - 1);

              /* m = A(j+1:n, j+1:n) */
              gsl_matrix_view m = gsl_matrix_submatrix(A, j + 1, j + 1, N - j - 1, N - j - 1);

              /* m = m - v v^T / alpha */
              gsl_blas_dsyr(CblasLower, -alphainv, &v.vector, &m.matrix);

              /* v = v / alpha */
              gsl_vector_scale(&v.vector, alphainv);

            }

          if (E)
            gsl_vector_set(E, j, alpha - ajj);

          gsl_matrix_set(A, j, j, alpha);
        }

      if (E)
        {
          /* we currently have: P A P^T + E = L D L^T, permute E
           * so that we have: P (A + E) P^T = L D L^T */
          gsl_permute_vector_inverse(p, E);
        }

      return GSL_SUCCESS;
    }
}

int
gsl_linalg_mcholesky_solve(const gsl_matrix * LDLT,
                           const gsl_permutation * p,
                           const gsl_vector * b,
                           gsl_vector * x)
{
  int status = gsl_linalg_pcholesky_solve(LDLT, p, b, x);
  return status;
}

int
gsl_linalg_mcholesky_svx(const gsl_matrix * LDLT,
                         const gsl_permutation * p,
                         gsl_vector * x)
{
  int status = gsl_linalg_pcholesky_svx(LDLT, p, x);
  return status;
}

int
gsl_linalg_mcholesky_rcond (const gsl_matrix * LDLT, const gsl_permutation * p,
                            double * rcond, gsl_vector * work)
{
  int status = gsl_linalg_pcholesky_rcond(LDLT, p, rcond, work);
  return status;
}

int
gsl_linalg_mcholesky_invert(const gsl_matrix * LDLT, const gsl_permutation * p,
                            gsl_matrix * Ainv)
{
  int status = gsl_linalg_pcholesky_invert(LDLT, p, Ainv);
  return status;
}

/*
mcholesky_maxabs()
  Compute:

val = max_i |v_i|

Inputs: v      - vector
        maxabs - (output) max abs value

Return: index corresponding to max_i |v_i|
*/

static size_t
mcholesky_maxabs(const gsl_vector * v, double *maxabs)
{
  const size_t n = v->size;
  size_t i;
  size_t idx = 0;
  double max = gsl_vector_get(v, idx);

  for (i = 1; i < n; ++i)
    {
      double vi = gsl_vector_get(v, i);
      double absvi = fabs(vi);

      if (absvi > max)
        {
          max = absvi;
          idx = i;
        }
    }

  if (maxabs)
    *maxabs = max;

  return idx;
}