1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/* linalg/qr_band.c
*
* Copyright (C) 2020 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
/* Factorise a (p,q) banded M x N matrix A into
*
* A = Q R
*
* where Q is orthogonal (M x M) and R is upper triangular (M x N).
*
* Example with M = 7, N = 6, (p,q) = (2,1)
*
* A = [ A11 A12 0 0 0 0 ]
* [ A21 A22 A23 0 0 0 ]
* [ A31 A32 A33 A34 0 0 ]
* [ 0 A42 A43 A44 A45 0 ]
* [ 0 0 A53 A54 A55 A56 ]
* [ 0 0 0 A64 A65 A66 ]
* [ 0 0 0 0 A75 A76 ]
*
* AB has dimensions N-by-(2p + q + 1)
*
* INPUT: OUTPUT:
*
* AB = [ * * * A11 A21 A31 ] AB = [ * * * R11 V21 V31 ]
* [ * * A12 A22 A32 A42 ] [ * * R12 R22 V32 V42 ]
* [ * 0 A23 A33 A43 A53 ] [ * R13 R23 R33 V43 V53 ]
* [ 0 0 A34 A44 A54 A64 ] [ R14 R24 R34 R44 V54 V64 ]
* [ 0 0 A45 A55 A65 A75 ] [ R25 R35 R45 R55 V65 V75 ]
* [ 0 0 A56 A66 A76 * ] [ R36 R46 R56 R66 V76 * ]
* -p-- -q- -1- ---p--- ---p--- -q- -1- ---p---
*
* The full matrix for Q can be obtained as the product
*
* Q = Q_k .. Q_2 Q_1
*
* where k = MIN(M,N) and
*
* Q_i = (I - tau_i * v_i * v_i')
*
* and where v_i is a Householder vector
*/
int
gsl_linalg_QR_band_decomp_L2 (const size_t M, const size_t p, const size_t q, gsl_matrix * AB, gsl_vector * tau)
{
const size_t N = AB->size1;
if (tau->size != N)
{
GSL_ERROR ("tau must have length N", GSL_EBADLEN);
}
else if (AB->size2 != 2*p + q + 1)
{
GSL_ERROR ("dimensions of AB are inconsistent with (p,q)", GSL_EBADLEN);
}
else
{
const size_t minMN = GSL_MIN(M, N);
size_t j;
/* set AB(:,1:p) to zero */
if (p > 0)
{
gsl_matrix_view m = gsl_matrix_submatrix(AB, 0, 0, N, p);
gsl_matrix_set_zero(&m.matrix);
}
for (j = 0; j < minMN; ++j)
{
/* Compute the Householder transformation to reduce the j-th
column of the matrix to a multiple of the j-th unit vector */
size_t k1 = GSL_MIN(p + 1, M - j); /* number of non-zero elements of this column, including diagonal element */
size_t k2 = GSL_MIN(p + q, N - j - 1); /* number of columns to update */
gsl_vector_view c = gsl_matrix_subrow(AB, j, p + q, k1);
double tau_j = gsl_linalg_householder_transform (&(c.vector));
double * ptr = gsl_vector_ptr(&(c.vector), 0);
gsl_vector_set (tau, j, tau_j);
/* apply the transformation to the remaining columns */
if (k2 > 0)
{
gsl_matrix_view m = gsl_matrix_submatrix (AB, j + 1, p + q - 1, k2, k1);
gsl_vector_view work = gsl_vector_subvector(tau, j + 1, k2);
double tmp = *ptr;
m.matrix.tda -= 1; /* unskew matrix */
/* we want to compute H*A(j:j+k1-1,j+1:j+k2), but due to our using row-major order, the
* matrix m contains A(j:j+k1-1,j+1:j+k2)^T. So therefore we apply H from the right,
*
* [H*A]^T = A^T H^T = A^T H
*/
*ptr = 1.0;
gsl_linalg_householder_right(tau_j, &(c.vector), &(m.matrix), &(work.vector));
*ptr = tmp;
}
}
return GSL_SUCCESS;
}
}
int
gsl_linalg_QR_band_unpack_L2 (const size_t p, const size_t q, const gsl_matrix * QRB, const gsl_vector * tau,
gsl_matrix * Q, gsl_matrix * R)
{
const size_t M = Q->size1;
const size_t N = QRB->size1;
if (Q->size2 != M)
{
GSL_ERROR ("Q matrix must be square", GSL_ENOTSQR);
}
else if (R->size1 != M || R->size2 != N)
{
GSL_ERROR ("R matrix must be M x N", GSL_ENOTSQR);
}
else if (tau->size < GSL_MIN (M, N))
{
GSL_ERROR ("size of tau must be at least MIN(M,N)", GSL_EBADLEN);
}
else if (QRB->size2 != 2*p + q + 1)
{
GSL_ERROR ("dimensions of QRB are inconsistent with (p,q)", GSL_EBADLEN);
}
else
{
size_t i;
/* form matrix Q */
gsl_matrix_set_identity (Q);
for (i = GSL_MIN (M, N); i-- > 0;)
{
size_t k1 = GSL_MIN(p + 1, M - i); /* number of non-zero elements of this column, including diagonal element */
gsl_vector_const_view h = gsl_matrix_const_subrow(QRB, i, p + q, k1);
gsl_matrix_view m = gsl_matrix_submatrix (Q, i, i, k1, M - i);
double ti = gsl_vector_get (tau, i);
gsl_vector_view work = gsl_matrix_subcolumn(R, 0, 0, M - i);
double * ptr = gsl_vector_ptr((gsl_vector *) &h.vector, 0);
double tmp = *ptr;
*ptr = 1.0;
gsl_linalg_householder_left (ti, &h.vector, &m.matrix, &work.vector);
*ptr = tmp;
}
/* form matrix R */
gsl_matrix_set_zero(R);
for (i = 0; i <= GSL_MIN(p + q, N - 1); ++i)
{
gsl_vector_const_view src = gsl_matrix_const_subcolumn(QRB, p + q - i, i, GSL_MIN(M, N - i));
gsl_vector_view dest = gsl_matrix_superdiagonal(R, i);
gsl_vector_memcpy(&dest.vector, &src.vector);
}
return GSL_SUCCESS;
}
}
|