File: qr_ud.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (684 lines) | stat: -rw-r--r-- 21,249 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
/* linalg/qr_ud.c
 * 
 * Copyright (C) 2020 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>

/*
 * this module contains routines for the QR factorization of a matrix
 * using the recursive Level 3 BLAS algorithm of Elmroth and Gustavson with
 * additional modifications courtesy of Julien Langou.
 */

static int aux_QR_TRD_decomp (gsl_matrix * U, gsl_matrix * A, const gsl_vector * D, gsl_matrix * T);
static double qrtd_householder_transform (double *v0, double *v1);
static double qrtrd_householder_transform (double *v0, gsl_vector * v, double *d);

/*
gsl_linalg_QR_UD_decomp()
  Compute the QR decomposition of the "triangle on top of diagonal" matrix

  [ U ] = Q [ R ]
  [ D ]     [ 0 ]

where U is N-by-N upper triangular, D is N-by-N diagonal

Inputs: U - on input, upper triangular N-by-N matrix
            on output, R factor in upper triangle
        D - diagonal N-by-N matrix
        Y - (output) upper triangular N-by-N matrix (lower part of V)
        T - (output) block reflector matrix, N-by-N

Notes:
1) Based on the Elmroth/Gustavson algorithm, taking into account the
sparse structure of the U,S matrices

2) The Householder matrix V has the special form:

      N
V = [ I ] N
    [ Y ] N

with Y upper triangular

3) The orthogonal matrix is

Q = I - V T V^T
*/

int
gsl_linalg_QR_UD_decomp (gsl_matrix * U, const gsl_vector * D, gsl_matrix * Y, gsl_matrix * T)
{
  const size_t N = U->size1;

  if (N != U->size2)
    {
      GSL_ERROR ("U matrix must be square", GSL_ENOTSQR);
    }
  else if (D->size != N)
    {
      GSL_ERROR ("D matrix does not match dimensions of U", GSL_EBADLEN);
    }
  else if (Y->size1 != Y->size2)
    {
      GSL_ERROR ("Y matrix must be square", GSL_ENOTSQR);
    }
  else if (Y->size1 != N)
    {
      GSL_ERROR ("Y matrix does not match dimensions of U", GSL_EBADLEN);
    }
  else if (T->size1 != N || T->size2 != N)
    {
      GSL_ERROR ("T matrix has wrong dimensions", GSL_EBADLEN);
    }
  else if (N == 1)
    {
      /* base case, compute Householder transform for single column matrix */
      double * T00 = gsl_matrix_ptr(T, 0, 0);
      double * U00 = gsl_matrix_ptr(U, 0, 0);
      double * Y00 = gsl_matrix_ptr(Y, 0, 0);
      *Y00 = gsl_vector_get(D, 0);
      *T00 = qrtd_householder_transform(U00, Y00);
      return GSL_SUCCESS;
    }
  else
    {
      /*
       * partition matrices:
       *
       *       N1  N2              N1  N2
       * N1 [ U11 U12 ] and  N1 [ T11 T12 ]
       * N2 [  0  U22 ]      N2 [  0  T22 ]
       * N1 [ D11 D12 ]
       * N2 [  0  D22 ]
       */
      int status;
      const size_t N1 = N / 2;
      const size_t N2 = N - N1;

      gsl_matrix_view U11 = gsl_matrix_submatrix(U, 0, 0, N1, N1);
      gsl_matrix_view U12 = gsl_matrix_submatrix(U, 0, N1, N1, N2);
      gsl_matrix_view U22 = gsl_matrix_submatrix(U, N1, N1, N2, N2);

      gsl_vector_const_view D1 = gsl_vector_const_subvector(D, 0, N1);
      gsl_vector_const_view D2 = gsl_vector_const_subvector(D, N1, N2);

      gsl_matrix_view Y11 = gsl_matrix_submatrix(Y, 0, 0, N1, N1);
      gsl_matrix_view Y12 = gsl_matrix_submatrix(Y, 0, N1, N1, N2);

      gsl_matrix_view T11 = gsl_matrix_submatrix(T, 0, 0, N1, N1);
      gsl_matrix_view T12 = gsl_matrix_submatrix(T, 0, N1, N1, N2);
      gsl_matrix_view T22 = gsl_matrix_submatrix(T, N1, N1, N2, N2);

      gsl_matrix_view m;

      /*
       * Eq. 2: recursively factor
       *
       *       N1           N1
       * N1 [ U11 ] = Q1 [ R11 ] N1
       * N2 [  0  ]      [  0  ] N2
       * N1 [ D11 ]      [  0  ] N1
       * N2 [  0  ]      [  0  ] N2
       */
      status = gsl_linalg_QR_UD_decomp(&U11.matrix, &D1.vector, &Y11.matrix, &T11.matrix);
      if (status)
        return status;

      /*
       * Eq. 3:
       *
       *      N2              N2            N2
       * N1 [ R12  ] = Q1^T [ U12 ] = [   U12 - W   ] N1
       * N2 [ U22~ ]        [ U22 ]   [     U22     ] N2
       * N1 [ D12~ ]        [  0  ]   [  - V31 W    ] N1
       * N2 [ D22~ ]        [ D22 ]   [     D22     ] N2
       *
       * where W = T11^T U12, using T12 as temporary storage, and
       *
       *        N1
       * V1 = [  I  ] N1
       *      [  0  ] N2
       *      [ V31 ] N1
       *      [  0  ] N2
       */
      gsl_matrix_memcpy(&T12.matrix, &U12.matrix);                                                    /* W := U12 */
      gsl_blas_dtrmm(CblasLeft, CblasUpper, CblasTrans, CblasNonUnit, 1.0, &T11.matrix, &T12.matrix); /* W := T11^T W */
      gsl_matrix_sub(&U12.matrix, &T12.matrix);                                                       /* R12 := U12 - W */
      gsl_blas_dtrmm(CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit, -1.0, &Y11.matrix, &T12.matrix); /* W := -V31 W */
      gsl_matrix_memcpy(&Y12.matrix, &T12.matrix);                                                    /* Y12 := -V31 W */

      /*
       * Eq. 4: factor the "triangle on top of rectangle on top of diagonal" matrix
       *
       * N2 [ U22 ] = Q2~ [ R22 ] N2
       * N1 [ Y12 ]       [  0  ] N1
       * N2 [ D22 ]       [  0  ] N2
       */
      m = gsl_matrix_submatrix(Y, 0, N1, N, N2);
      status = aux_QR_TRD_decomp(&U22.matrix, &m.matrix, &D2.vector, &T22.matrix);
      if (status)
        return status;

      /*
       * Eq. 13: update T12 := -T11 * V1^T * V2 * T22
       *
       * where:
       *
       *        N1                N2
       * V1 = [  I   ] N1   V2 = [  0   ] N1
       *      [  0   ] N2        [  I   ] N2
       *      [ V31~ ] N1        [ V32~ ] N1
       *      [  0   ] N2        [ V42~ ] N2
       *
       * Note: V1^T V2 = V31~^T V32~
       */

      gsl_matrix_memcpy(&T12.matrix, &Y12.matrix);                                                    /* T12 := V32~ */
      gsl_blas_dtrmm(CblasLeft, CblasUpper, CblasTrans, CblasNonUnit, 1.0, &Y11.matrix, &T12.matrix); /* T12 := V31~^T V32~ */
      gsl_blas_dtrmm(CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit, -1.0, &T11.matrix, &T12.matrix); /* T12 := -T11 * T12 */
      gsl_blas_dtrmm(CblasRight, CblasUpper, CblasNoTrans, CblasNonUnit, 1.0, &T22.matrix, &T12.matrix); /* T12 := T12 * T22 */

      return GSL_SUCCESS;
    }
}

/* Find the least squares solution to the overdetermined system 
 *
 *   [ U ] x = b
 *   [ D ]
 *  
 * using the QR factorization [ U; D ] = Q R. 
 *
 * Inputs: R    - upper triangular R matrix, N-by-N
 *         Y    - upper triangular Y matrix, N-by-N
 *         T    - upper triangular block reflector, N-by-N
 *         b    - right hand side, size 2*N
 *         x    - (output) solution, size 2*N
 *                x(1:N) = least squares solution vector
 *                x(N+1:2*N) = vector whose norm equals ||b - Ax||
 *         work - workspace, size N
 */

int
gsl_linalg_QR_UD_lssolve (const gsl_matrix * R, const gsl_matrix * Y, const gsl_matrix * T,
                          const gsl_vector * b, gsl_vector * x, gsl_vector * work)
{
  const size_t N = R->size1;
  const size_t M = 2 * N;

  if (R->size2 != N)
    {
      GSL_ERROR ("R matrix must be square", GSL_ENOTSQR);
    }
  else if (Y->size1 != Y->size2)
    {
      GSL_ERROR ("Y matrix must be square", GSL_ENOTSQR);
    }
  else if (Y->size1 != N)
    {
      GSL_ERROR ("Y and R must have same dimensions", GSL_EBADLEN);
    }
  else if (T->size1 != N || T->size2 != N)
    {
      GSL_ERROR ("T matrix must be N-by-N", GSL_EBADLEN);
    }
  else if (M != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (M != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else if (N != work->size)
    {
      GSL_ERROR ("workspace must be length N", GSL_EBADLEN);
    }
  else
    {
      return gsl_linalg_QR_UU_lssolve(R, Y, T, b, x, work);
    }
}

/* Find the least squares solution to the overdetermined system 
 *
 *   [ U ] x = b
 *   [ D ]
 *  
 * using the QR factorization [ U; D ] = Q R. 
 *
 * Inputs: R    - upper triangular R matrix, N-by-N
 *         Y    - upper triangular Y matrix, N-by-N
 *         T    - upper triangular block reflector, N-by-N
 *         x    - (input/output) solution, size 2*N
 *                on input, right hand side vector b, length 2*N;
 *                on output,
 *                  x(1:N) = least squares solution vector
 *                  x(N+1:2*N) = vector whose norm equals ||b - Ax||
 *         work - workspace, size N
 */

int
gsl_linalg_QR_UD_lssvx (const gsl_matrix * R, const gsl_matrix * Y, const gsl_matrix * T,
                        gsl_vector * x, gsl_vector * work)
{
  const size_t N = R->size1;
  const size_t M = 2 * N;

  if (R->size2 != N)
    {
      GSL_ERROR ("R matrix must be square", GSL_ENOTSQR);
    }
  else if (Y->size1 != Y->size2)
    {
      GSL_ERROR ("Y matrix must be square", GSL_ENOTSQR);
    }
  else if (Y->size1 != N)
    {
      GSL_ERROR ("Y and R must have same dimensions", GSL_EBADLEN);
    }
  else if (T->size1 != N || T->size2 != N)
    {
      GSL_ERROR ("T matrix must be N-by-N", GSL_EBADLEN);
    }
  else if (M != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else if (N != work->size)
    {
      GSL_ERROR ("workspace must be length N", GSL_EBADLEN);
    }
  else
    {
      return gsl_linalg_QR_UU_lssvx(R, Y, T, x, work);
    }
}

/*
gsl_linalg_QR_UD_QTvec()
  Apply 2N-by-2N Q^T to the 2N-by-1 vector b

Inputs: Y    - upper triangular Y matrix encoded by gsl_linalg_QR_UD_decomp, N-by-N
        T    - block reflector matrix, N-by-N
        b    - 2N-by-1 vector replaced by Q^T b on output
        work - workspace, length N

Notes:
1) Q^T b = (I - V T^T V^T) b
         = b - V T^T [ I Y^T ] [ b1 ]
                                   [ b2 ]
         = b - V T^T [ b1 + Y^T b2 ]
         = [ b1 ] - [  w  ]
           [ b2 ]   [ Y w ]

where w = T^T ( b1 + Y^T b2 )
*/

int
gsl_linalg_QR_UD_QTvec(const gsl_matrix * Y, const gsl_matrix * T, gsl_vector * b, gsl_vector * work)
{
  const size_t N = Y->size1;
  const size_t M = 2 * N;

  if (Y->size2 != N)
    {
      GSL_ERROR ("Y matrix must be square", GSL_ENOTSQR);
    }
  else if (T->size1 != N || T->size2 != N)
    {
      GSL_ERROR ("T matrix must be N-by-N", GSL_EBADLEN);
    }
  else if (b->size != M)
    {
      GSL_ERROR ("b vector must have length M", GSL_EBADLEN);
    }
  else if (work->size != N)
    {
      GSL_ERROR ("workspace must be length N", GSL_EBADLEN);
    }
  else
    {
      return gsl_linalg_QR_UU_QTvec(Y, T, b, work);
    }
}

/*
aux_QR_TRD_decomp()
  Compute the QR decomposition of the "triangle on top of rectangle on top of diagonal" matrix

  [ U ] = Q [ R ]
  [ A ]     [ 0 ]
  [ D ]     [ 0 ]

where U is N-by-N upper triangular, A is M-by-N dense, D is N-by-N diagonal

Inputs: U - on input, upper triangular N-by-N matrix
            on output, R factor in upper triangle
        A - on input, A is stored in A(1:M,1:N)
            on output, Y is stored in A(1:M+N,1:N)
            size (M+N)-by-N
        D - diagonal N-by-N matrix
        T - (output) block reflector matrix, N-by-N

Notes:
1) Based on the Elmroth/Gustavson algorithm, taking into account the
sparse structure of the U,S matrices

2) The Householder matrix V has the special form:

      N
V = [ I ] N
    [ Y ] M+N

with Y upper trapezoidal

3) The orthogonal matrix is

Q = I - V T V^T
*/

static int
aux_QR_TRD_decomp (gsl_matrix * U, gsl_matrix * A, const gsl_vector * D, gsl_matrix * T)
{
  const size_t N = U->size1;

  if (N != U->size2)
    {
      GSL_ERROR ("U matrix must be square", GSL_ENOTSQR);
    }
  else if (A->size1 <= N)
    {
      GSL_ERROR ("A matrix must have > N rows", GSL_EBADLEN);
    }
  else if (D->size != N)
    {
      GSL_ERROR ("D matrix does not match dimensions of U", GSL_EBADLEN);
    }
  else if (T->size1 != N || T->size2 != N)
    {
      GSL_ERROR ("T matrix has wrong dimensions", GSL_EBADLEN);
    }
  else if (N == 1)
    {
      /* base case, compute Householder transform for single column matrix */
      const size_t M = A->size1 - N;
      double * T00 = gsl_matrix_ptr(T, 0, 0);
      double * U00 = gsl_matrix_ptr(U, 0, 0);
      gsl_vector_view v = gsl_matrix_subcolumn(A, 0, 0, M);
      double * D00 = gsl_matrix_ptr(A, M, 0);
      *D00 = gsl_vector_get(D, 0);
      *T00 = qrtrd_householder_transform(U00, &v.vector, D00);
      return GSL_SUCCESS;
    }
  else
    {
      /*
       * partition matrices:
       *
       *       N1  N2              N1  N2
       * N1 [ U11 U12 ] and  N1 [ T11 T12 ]
       * N2 [  0  U22 ]      N2 [  0  T22 ]
       * N1 [ D11 D12 ]
       * N2 [  0  D22 ]
       */
      int status;
      const size_t M = A->size1 - N;
      const size_t N1 = N / 2;
      const size_t N2 = N - N1;

      gsl_matrix_view U11 = gsl_matrix_submatrix(U, 0, 0, N1, N1);
      gsl_matrix_view U12 = gsl_matrix_submatrix(U, 0, N1, N1, N2);
      gsl_matrix_view U22 = gsl_matrix_submatrix(U, N1, N1, N2, N2);

      gsl_matrix_view A1 = gsl_matrix_submatrix(A, 0, 0, M, N1);
      gsl_matrix_view A2 = gsl_matrix_submatrix(A, 0, N1, M, N2);

      gsl_vector_const_view D1 = gsl_vector_const_subvector(D, 0, N1);
      gsl_vector_const_view D2 = gsl_vector_const_subvector(D, N1, N2);

      gsl_matrix_view T11 = gsl_matrix_submatrix(T, 0, 0, N1, N1);
      gsl_matrix_view T12 = gsl_matrix_submatrix(T, 0, N1, N1, N2);
      gsl_matrix_view T22 = gsl_matrix_submatrix(T, N1, N1, N2, N2);

      gsl_matrix_view Y41 = gsl_matrix_submatrix(A, M, 0, N1, N1);
      gsl_matrix_view Y42 = gsl_matrix_submatrix(A, M, N1, N1, N2);

      gsl_matrix_view m;

      /*
       * Eq. 2: recursively factor
       *
       *       N1           N1
       * N1 [ U11 ] = Q1 [ R11 ] N1
       * N2 [  0  ]      [  0  ] N2
       * M  [ A1  ]      [  0  ] M
       * N1 [ D11 ]      [  0  ] N1
       * N2 [  0  ]      [  0  ] N2
       */
      m = gsl_matrix_submatrix(A, 0, 0, M + N1, N1);
      status = aux_QR_TRD_decomp(&U11.matrix, &m.matrix, &D1.vector, &T11.matrix);
      if (status)
        return status;

      /*
       * Eq. 3:
       *
       *      N2              N2            N2
       * N1 [ R12  ] = Q1^T [ U12 ] = [   U12 - W   ] N1
       * N2 [ U22~ ]        [ U22 ]   [     U22     ] N2
       * M  [ A2~  ]        [ A2  ]   [ A2 - V31 W  ] M
       * N1 [ D12~ ]        [  0  ]   [  - V41 W    ] N1
       * N2 [ D22~ ]        [ D22 ]   [     D22     ] N2
       *
       * where W = T11^T ( U12 + V31^T A2 ), using T12 as temporary storage, and
       *
       *        N1
       * V1 = [  I  ] N1
       *      [  0  ] N2
       *      [ V31 ] M
       *      [ V41 ] N1
       *      [  0  ] N2
       */
      gsl_matrix_memcpy(&T12.matrix, &U12.matrix);                                                    /* W := U12 */
      gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, &A1.matrix, &A2.matrix, 1.0, &T12.matrix);        /* W := U12 + V31^T A2 */
      gsl_blas_dtrmm(CblasLeft, CblasUpper, CblasTrans, CblasNonUnit, 1.0, &T11.matrix, &T12.matrix); /* W := T11^T W */
      gsl_matrix_sub(&U12.matrix, &T12.matrix);                                                       /* R12 := U12 - W */
      gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, -1.0, &A1.matrix, &T12.matrix, 1.0, &A2.matrix);     /* A2 := A2 - V31 W */

      gsl_blas_dtrmm(CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit, -1.0, &Y41.matrix, &T12.matrix); /* W := -V41 W */
      gsl_matrix_memcpy(&Y42.matrix, &T12.matrix);                                                       /* V42 := -431 W */

      /*
       * Eq. 4: factor the "triangle on top of rectangle on top of diagonal" matrix
       *
       * N2 [ U22 ] = Q2~ [ R22 ] N2
       * N1 [ Y12 ]       [  0  ] N1
       * N2 [ D22 ]       [  0  ] N2
       */
      m = gsl_matrix_submatrix(A, 0, N1, M + N, N2);
      status = aux_QR_TRD_decomp(&U22.matrix, &m.matrix, &D2.vector, &T22.matrix);
      if (status)
        return status;

      /*
       * Eq. 13: update T12 := -T11 * V1^T * V2 * T22
       *
       * where:
       *
       *        N1                N2
       * V1 = [  I   ] N1   V2 = [  0   ] N1
       *      [  0   ] N2        [  I   ] N2
       *      [ V31~ ] M         [ V32~ ] M 
       *      [ V41~ ] N1        [ V42~ ] N1
       *      [  0   ] N2        [ V52~ ] N2
       *
       * Note: V1^T V2 = V31~^T V32~ + V41~^T V42~
       */

      gsl_matrix_memcpy(&T12.matrix, &Y42.matrix);                                                    /* T12 := V42~ */
      gsl_blas_dtrmm(CblasLeft, CblasUpper, CblasTrans, CblasNonUnit, 1.0, &Y41.matrix, &T12.matrix); /* T12 := V41~^T V42~ */
      gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, &A1.matrix, &A2.matrix, 1.0, &T12.matrix);        /* T12 := V31~^T V32~^T + V41~^T V42~ */
      gsl_blas_dtrmm(CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit, -1.0, &T11.matrix, &T12.matrix); /* T12 := -T11 * T12 */
      gsl_blas_dtrmm(CblasRight, CblasUpper, CblasNoTrans, CblasNonUnit, 1.0, &T22.matrix, &T12.matrix); /* T12 := T12 * T22 */

      return GSL_SUCCESS;
    }
}

/*
qrtd_householder_transform()
  This routine is an optimized version of
gsl_linalg_householder_transform(), designed for the QR
decomposition of M-by-N matrices of the form:

B = [ U ]
    [ S ]

where U,S are N-by-N upper triangular.
This routine computes a householder transformation (tau,v) of a 
x so that P x = [ I - tau*v*v' ] x annihilates x(1:n-1). x will
be a subcolumn of the matrix B, and so its structure will be:

x = [ x0 ] <- 1 nonzero value for the diagonal element of U
    [ y0 ] <- 1 nonzero value for the diagonal element of S

Inputs: v0 - pointer to diagonal element of U
             on input, v0 = x0;
        v1 - on input, pointer to diagonal element of S
             on output, householder vector v
*/

static double
qrtd_householder_transform (double *v0, double *v1)
{
  /* replace v[0:M-1] with a householder vector (v[0:M-1]) and
     coefficient tau that annihilate v[1:M-1] */

  double alpha, beta, tau ;
  
  /* compute xnorm = || [ 0 ; v ] ||, ignoring zero part of vector */
  double xnorm = fabs(*v1);

  if (xnorm == 0) 
    {
      return 0.0; /* tau = 0 */
    }

  alpha = *v0;
  beta = - GSL_SIGN(alpha) * hypot(alpha, xnorm) ;
  tau = (beta - alpha) / beta ;
  
  {
    double s = (alpha - beta);
    
    if (fabs(s) > GSL_DBL_MIN) 
      {
        *v1 /= s;
        *v0 = beta;
      }
    else
      {
        *v1 *= GSL_DBL_EPSILON / s;
        *v1 /= GSL_DBL_EPSILON;
        *v0 = beta;
      }
  }
  
  return tau;
}

/*
qrtrd_householder_transform()
  This routine is an optimized version of
gsl_linalg_householder_transform(), designed for the QR
decomposition of M-by-N matrices of the form:

B = [ U ]
    [ A ]
    [ D ]

where U is N-by-N upper triangular A is M-by-N dense and D is N-by-N diagonal.
This routine computes a householder transformation (tau,v) of a 
x so that P x = [ I - tau*v*v' ] x annihilates x(1:n-1). x will
be a subcolumn of the matrix B, and so its structure will be:

x = [ x0 ] <- 1 nonzero value for the diagonal element of S
    [ 0  ] <- N - j - 1 zeros, where j is column of matrix in [0,N-1]
    [ x  ] <- M nonzero values for the dense part A

Inputs: v0 - pointer to diagonal element of S
             on input, v0 = x0;
        v  - on input, x vector
             on output, householder vector v
        d  - on input, diagonal element of D
             on output, householder element
*/

static double
qrtrd_householder_transform (double *v0, gsl_vector * v, double *d)
{
  /* replace v[0:M-1] with a householder vector (v[0:M-1]) and
     coefficient tau that annihilate v[1:M-1] */

  double alpha, beta, tau ;
  
  /* compute xnorm = || [ 0 ; v ; 0 ; d] ||, ignoring zero part of vector */
  double xnorm;
  
  xnorm = gsl_blas_dnrm2(v);
  xnorm = gsl_hypot(xnorm, *d);

  if (xnorm == 0) 
    {
      return 0.0; /* tau = 0 */
    }

  alpha = *v0;
  beta = - GSL_SIGN(alpha) * hypot(alpha, xnorm) ;
  tau = (beta - alpha) / beta ;
  
  {
    double s = (alpha - beta);
    
    if (fabs(s) > GSL_DBL_MIN) 
      {
        gsl_blas_dscal (1.0 / s, v);
        *d /= s;
        *v0 = beta;
      }
    else
      {
        gsl_blas_dscal (GSL_DBL_EPSILON / s, v);
        gsl_blas_dscal (1.0 / GSL_DBL_EPSILON, v);
        *d *= GSL_DBL_EPSILON / s;
        *d /= GSL_DBL_EPSILON;
        *v0 = beta;
      }
  }
  
  return tau;
}