File: qrc.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (342 lines) | stat: -rw-r--r-- 9,897 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/* linalg/qrc.c
 *
 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough
 * Copyright (C) 2017 Christian Krueger
 * Copyright (C) 2020 Patrick Alken
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman, modified by C. Krueger */

#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>

/* Factorise a general complex-valued M x N matrix A into
 *
 *   A = Q R
 *
 * where Q is unitary (M x M) and R is upper triangular (M x N).
 *
 * Q is stored as a packed set of Householder transformations in the
 * strict lower triangular part of the input matrix.
 *
 * R is stored in the diagonal and upper triangle of the input matrix.
 *
 * The full matrix for Q can be obtained as the product
 *
 *       Q = Q_k .. Q_2 Q_1
 *
 * where k = MIN(M,N) and
 *
 *       Q_i = (I - tau_i * v_i * v_i')
 *
 * and where v_i is a Householder vector
 *
 *       v_i = [1, m(i+1,i), m(i+2,i), ... , m(M,i)]
 *
 * This storage scheme is the same as in LAPACK.  */

int
gsl_linalg_complex_QR_decomp (gsl_matrix_complex * A, gsl_vector_complex * tau)
{
  const size_t M = A->size1;
  const size_t N = A->size2;

  if (tau->size != N)
    {
      GSL_ERROR ("size of tau must be N", GSL_EBADLEN);
    }
  else
    {
      size_t i;

      for (i = 0; i < GSL_MIN (M, N); i++)
        {
          /* Compute the Householder transformation to reduce the j-th
             column of the matrix to a multiple of the j-th unit vector */

          gsl_vector_complex_view c = gsl_matrix_complex_subcolumn (A, i, i, M - i);
          gsl_complex tau_i = gsl_linalg_complex_householder_transform (&(c.vector));

          gsl_vector_complex_set (tau, i, tau_i);

          /* apply the transformation to the remaining columns and update the norms */

          if (i + 1 < N)
            {
              gsl_matrix_complex_view m = gsl_matrix_complex_submatrix (A, i, i + 1, M - i, N - i - 1);
              gsl_complex tau_i_conj = gsl_complex_conjugate(tau_i);
              gsl_vector_complex_view work = gsl_vector_complex_subvector(tau, i + 1, N - i - 1);

              gsl_linalg_complex_householder_left(tau_i_conj, &(c.vector), &(m.matrix), &(work.vector));
            }
        }

      return GSL_SUCCESS;
    }
}

/* Solves the system A x = b using the QR factorisation,

 *  R x = Q^H b
 *
 * to obtain x.
 */

int
gsl_linalg_complex_QR_solve (const gsl_matrix_complex * QR, const gsl_vector_complex * tau,
                             const gsl_vector_complex * b, gsl_vector_complex * x)
{
  if (QR->size1 != QR->size2)
    {
      GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
    }
  else if (QR->size1 != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (QR->size2 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else
    {
      /* copy x <- b */
      gsl_vector_complex_memcpy (x, b);

      /* solve for x */
      gsl_linalg_complex_QR_svx (QR, tau, x);

      return GSL_SUCCESS;
    }
}

/* Solves the system A x = b in place using the QR factorisation,

 *  R x = Q^H b
 *
 * to obtain x.
 */

int
gsl_linalg_complex_QR_svx (const gsl_matrix_complex * QR, const gsl_vector_complex * tau, gsl_vector_complex * x)
{

  if (QR->size1 != QR->size2)
    {
      GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
    }
  else if (QR->size1 != x->size)
    {
      GSL_ERROR ("matrix size must match x/rhs size", GSL_EBADLEN);
    }
  else
    {
      /* compute rhs = Q^H b */
      gsl_linalg_complex_QR_QHvec (QR, tau, x);

      /* solve R x = rhs, storing x in-place */
      gsl_blas_ztrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x);

      return GSL_SUCCESS;
    }
}


/* Find the least squares solution to the overdetermined system
 *
 *   A x = b
 *
 * for M >= N using the QR factorization A = Q R.
 */

int
gsl_linalg_complex_QR_lssolve (const gsl_matrix_complex * QR, const gsl_vector_complex * tau,
                               const gsl_vector_complex * b, gsl_vector_complex * x,
                               gsl_vector_complex * residual)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;

  if (M < N)
    {
      GSL_ERROR ("QR matrix must have M>=N", GSL_EBADLEN);
    }
  else if (M != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (N != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else if (M != residual->size)
    {
      GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN);
    }
  else
    {
      gsl_matrix_complex_const_view R = gsl_matrix_complex_const_submatrix (QR, 0, 0, N, N);
      gsl_vector_complex_view c = gsl_vector_complex_subvector(residual, 0, N);

      gsl_vector_complex_memcpy(residual, b);

      /* compute rhs = Q^H b */
      gsl_linalg_complex_QR_QHvec (QR, tau, residual);

      /* solve R x = rhs */
      gsl_vector_complex_memcpy(x, &(c.vector));
      gsl_blas_ztrsv (CblasUpper, CblasNoTrans, CblasNonUnit, &(R.matrix), x);

      /* compute residual = b - A x = Q (Q^H b - R x) */
      gsl_vector_complex_set_zero(&(c.vector));
      gsl_linalg_complex_QR_Qvec(QR, tau, residual);

      return GSL_SUCCESS;
    }
}

/* form the product v := Q^H v from a QR factorized matrix */

int
gsl_linalg_complex_QR_QHvec (const gsl_matrix_complex * QR, const gsl_vector_complex * tau, gsl_vector_complex * v)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;

  if (tau->size != N)
    {
      GSL_ERROR ("size of tau must be N", GSL_EBADLEN);
    }
  else if (v->size != M)
    {
      GSL_ERROR ("vector size must be M", GSL_EBADLEN);
    }
  else
    {
      size_t i;

      /* compute Q^H v */

      for (i = 0; i < GSL_MIN (M, N); i++)
        {
          gsl_vector_complex_const_view h = gsl_matrix_complex_const_subcolumn (QR, i, i, M - i);
          gsl_vector_complex_view w = gsl_vector_complex_subvector (v, i, M - i);
          gsl_complex ti = gsl_vector_complex_get (tau, i);
          gsl_complex ti_conj = gsl_complex_conjugate(ti);
          gsl_linalg_complex_householder_hv (ti_conj, &(h.vector), &(w.vector));
        }

      return GSL_SUCCESS;
    }
}


int
gsl_linalg_complex_QR_Qvec (const gsl_matrix_complex * QR, const gsl_vector_complex * tau, gsl_vector_complex * v)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;

  if (tau->size != GSL_MIN (M, N))
    {
      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
    }
  else if (v->size != M)
    {
      GSL_ERROR ("vector size must be M", GSL_EBADLEN);
    }
  else
    {
      size_t i;

      /* compute Q v */

      for (i = GSL_MIN (M, N); i-- > 0;)
        {
          gsl_vector_complex_const_view c = gsl_matrix_complex_const_column (QR, i);
          gsl_vector_complex_const_view h = gsl_vector_complex_const_subvector (&(c.vector),
                                                                i, M - i);
          gsl_vector_complex_view w = gsl_vector_complex_subvector (v, i, M - i);
          gsl_complex ti = gsl_vector_complex_get (tau, i);
          /* we do not need the conjugate of ti here */
          gsl_linalg_complex_householder_hv (ti, &h.vector, &w.vector);
        }
      return GSL_SUCCESS;
    }
}

/* form the unitary matrix Q from the packed QR matrix */
int
gsl_linalg_complex_QR_unpack (const gsl_matrix_complex * QR, const gsl_vector_complex * tau,
                              gsl_matrix_complex * Q, gsl_matrix_complex * R)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;

  if (Q->size1 != M || Q->size2 != M)
    {
      GSL_ERROR ("Q matrix must be M x M", GSL_ENOTSQR);
    }
  else if (R->size1 != M || R->size2 != N)
    {
      GSL_ERROR ("R matrix must be M x N", GSL_ENOTSQR);
    }
  else if (tau->size != N)
    {
      GSL_ERROR ("size of tau must be N", GSL_EBADLEN);
    }
  else
    {
      size_t i, j;

      /* initialize Q to the identity */
      gsl_matrix_complex_set_identity (Q);

      for (i = GSL_MIN (M, N); i-- > 0;)
        {
          gsl_vector_complex_const_view c = gsl_matrix_complex_const_column (QR, i);
          gsl_vector_complex_const_view h = gsl_vector_complex_const_subvector (&c.vector, i, M - i);
          gsl_matrix_complex_view m = gsl_matrix_complex_submatrix (Q, i, i, M - i, M - i);
          gsl_complex ti = gsl_vector_complex_get (tau, i);
          gsl_vector_complex_view work = gsl_matrix_complex_subcolumn(R, 0, 0, M - i);

          /* we do not need the conjugate of ti here */
          gsl_linalg_complex_householder_left (ti, &h.vector, &m.matrix, &work.vector);
        }

      /* form the right triangular matrix R from a packed QR matrix */

      for (i = 0; i < M; i++)
        {
          for (j = 0; j < i && j < N; j++)
            gsl_matrix_complex_set (R, i, j, GSL_COMPLEX_ZERO);

          for (j = i; j < N; j++)
            gsl_matrix_complex_set (R, i, j, gsl_matrix_complex_get (QR, i, j));
        }

      return GSL_SUCCESS;
    }
}