1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
/* linalg/qrc.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough
* Copyright (C) 2017 Christian Krueger
* Copyright (C) 2020 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman, modified by C. Krueger */
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
/* Factorise a general complex-valued M x N matrix A into
*
* A = Q R
*
* where Q is unitary (M x M) and R is upper triangular (M x N).
*
* Q is stored as a packed set of Householder transformations in the
* strict lower triangular part of the input matrix.
*
* R is stored in the diagonal and upper triangle of the input matrix.
*
* The full matrix for Q can be obtained as the product
*
* Q = Q_k .. Q_2 Q_1
*
* where k = MIN(M,N) and
*
* Q_i = (I - tau_i * v_i * v_i')
*
* and where v_i is a Householder vector
*
* v_i = [1, m(i+1,i), m(i+2,i), ... , m(M,i)]
*
* This storage scheme is the same as in LAPACK. */
int
gsl_linalg_complex_QR_decomp (gsl_matrix_complex * A, gsl_vector_complex * tau)
{
const size_t M = A->size1;
const size_t N = A->size2;
if (tau->size != N)
{
GSL_ERROR ("size of tau must be N", GSL_EBADLEN);
}
else
{
size_t i;
for (i = 0; i < GSL_MIN (M, N); i++)
{
/* Compute the Householder transformation to reduce the j-th
column of the matrix to a multiple of the j-th unit vector */
gsl_vector_complex_view c = gsl_matrix_complex_subcolumn (A, i, i, M - i);
gsl_complex tau_i = gsl_linalg_complex_householder_transform (&(c.vector));
gsl_vector_complex_set (tau, i, tau_i);
/* apply the transformation to the remaining columns and update the norms */
if (i + 1 < N)
{
gsl_matrix_complex_view m = gsl_matrix_complex_submatrix (A, i, i + 1, M - i, N - i - 1);
gsl_complex tau_i_conj = gsl_complex_conjugate(tau_i);
gsl_vector_complex_view work = gsl_vector_complex_subvector(tau, i + 1, N - i - 1);
gsl_linalg_complex_householder_left(tau_i_conj, &(c.vector), &(m.matrix), &(work.vector));
}
}
return GSL_SUCCESS;
}
}
/* Solves the system A x = b using the QR factorisation,
* R x = Q^H b
*
* to obtain x.
*/
int
gsl_linalg_complex_QR_solve (const gsl_matrix_complex * QR, const gsl_vector_complex * tau,
const gsl_vector_complex * b, gsl_vector_complex * x)
{
if (QR->size1 != QR->size2)
{
GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
}
else if (QR->size1 != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (QR->size2 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
/* copy x <- b */
gsl_vector_complex_memcpy (x, b);
/* solve for x */
gsl_linalg_complex_QR_svx (QR, tau, x);
return GSL_SUCCESS;
}
}
/* Solves the system A x = b in place using the QR factorisation,
* R x = Q^H b
*
* to obtain x.
*/
int
gsl_linalg_complex_QR_svx (const gsl_matrix_complex * QR, const gsl_vector_complex * tau, gsl_vector_complex * x)
{
if (QR->size1 != QR->size2)
{
GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
}
else if (QR->size1 != x->size)
{
GSL_ERROR ("matrix size must match x/rhs size", GSL_EBADLEN);
}
else
{
/* compute rhs = Q^H b */
gsl_linalg_complex_QR_QHvec (QR, tau, x);
/* solve R x = rhs, storing x in-place */
gsl_blas_ztrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x);
return GSL_SUCCESS;
}
}
/* Find the least squares solution to the overdetermined system
*
* A x = b
*
* for M >= N using the QR factorization A = Q R.
*/
int
gsl_linalg_complex_QR_lssolve (const gsl_matrix_complex * QR, const gsl_vector_complex * tau,
const gsl_vector_complex * b, gsl_vector_complex * x,
gsl_vector_complex * residual)
{
const size_t M = QR->size1;
const size_t N = QR->size2;
if (M < N)
{
GSL_ERROR ("QR matrix must have M>=N", GSL_EBADLEN);
}
else if (M != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (N != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else if (M != residual->size)
{
GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN);
}
else
{
gsl_matrix_complex_const_view R = gsl_matrix_complex_const_submatrix (QR, 0, 0, N, N);
gsl_vector_complex_view c = gsl_vector_complex_subvector(residual, 0, N);
gsl_vector_complex_memcpy(residual, b);
/* compute rhs = Q^H b */
gsl_linalg_complex_QR_QHvec (QR, tau, residual);
/* solve R x = rhs */
gsl_vector_complex_memcpy(x, &(c.vector));
gsl_blas_ztrsv (CblasUpper, CblasNoTrans, CblasNonUnit, &(R.matrix), x);
/* compute residual = b - A x = Q (Q^H b - R x) */
gsl_vector_complex_set_zero(&(c.vector));
gsl_linalg_complex_QR_Qvec(QR, tau, residual);
return GSL_SUCCESS;
}
}
/* form the product v := Q^H v from a QR factorized matrix */
int
gsl_linalg_complex_QR_QHvec (const gsl_matrix_complex * QR, const gsl_vector_complex * tau, gsl_vector_complex * v)
{
const size_t M = QR->size1;
const size_t N = QR->size2;
if (tau->size != N)
{
GSL_ERROR ("size of tau must be N", GSL_EBADLEN);
}
else if (v->size != M)
{
GSL_ERROR ("vector size must be M", GSL_EBADLEN);
}
else
{
size_t i;
/* compute Q^H v */
for (i = 0; i < GSL_MIN (M, N); i++)
{
gsl_vector_complex_const_view h = gsl_matrix_complex_const_subcolumn (QR, i, i, M - i);
gsl_vector_complex_view w = gsl_vector_complex_subvector (v, i, M - i);
gsl_complex ti = gsl_vector_complex_get (tau, i);
gsl_complex ti_conj = gsl_complex_conjugate(ti);
gsl_linalg_complex_householder_hv (ti_conj, &(h.vector), &(w.vector));
}
return GSL_SUCCESS;
}
}
int
gsl_linalg_complex_QR_Qvec (const gsl_matrix_complex * QR, const gsl_vector_complex * tau, gsl_vector_complex * v)
{
const size_t M = QR->size1;
const size_t N = QR->size2;
if (tau->size != GSL_MIN (M, N))
{
GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
}
else if (v->size != M)
{
GSL_ERROR ("vector size must be M", GSL_EBADLEN);
}
else
{
size_t i;
/* compute Q v */
for (i = GSL_MIN (M, N); i-- > 0;)
{
gsl_vector_complex_const_view c = gsl_matrix_complex_const_column (QR, i);
gsl_vector_complex_const_view h = gsl_vector_complex_const_subvector (&(c.vector),
i, M - i);
gsl_vector_complex_view w = gsl_vector_complex_subvector (v, i, M - i);
gsl_complex ti = gsl_vector_complex_get (tau, i);
/* we do not need the conjugate of ti here */
gsl_linalg_complex_householder_hv (ti, &h.vector, &w.vector);
}
return GSL_SUCCESS;
}
}
/* form the unitary matrix Q from the packed QR matrix */
int
gsl_linalg_complex_QR_unpack (const gsl_matrix_complex * QR, const gsl_vector_complex * tau,
gsl_matrix_complex * Q, gsl_matrix_complex * R)
{
const size_t M = QR->size1;
const size_t N = QR->size2;
if (Q->size1 != M || Q->size2 != M)
{
GSL_ERROR ("Q matrix must be M x M", GSL_ENOTSQR);
}
else if (R->size1 != M || R->size2 != N)
{
GSL_ERROR ("R matrix must be M x N", GSL_ENOTSQR);
}
else if (tau->size != N)
{
GSL_ERROR ("size of tau must be N", GSL_EBADLEN);
}
else
{
size_t i, j;
/* initialize Q to the identity */
gsl_matrix_complex_set_identity (Q);
for (i = GSL_MIN (M, N); i-- > 0;)
{
gsl_vector_complex_const_view c = gsl_matrix_complex_const_column (QR, i);
gsl_vector_complex_const_view h = gsl_vector_complex_const_subvector (&c.vector, i, M - i);
gsl_matrix_complex_view m = gsl_matrix_complex_submatrix (Q, i, i, M - i, M - i);
gsl_complex ti = gsl_vector_complex_get (tau, i);
gsl_vector_complex_view work = gsl_matrix_complex_subcolumn(R, 0, 0, M - i);
/* we do not need the conjugate of ti here */
gsl_linalg_complex_householder_left (ti, &h.vector, &m.matrix, &work.vector);
}
/* form the right triangular matrix R from a packed QR matrix */
for (i = 0; i < M; i++)
{
for (j = 0; j < i && j < N; j++)
gsl_matrix_complex_set (R, i, j, GSL_COMPLEX_ZERO);
for (j = i; j < N; j++)
gsl_matrix_complex_set (R, i, j, gsl_matrix_complex_get (QR, i, j));
}
return GSL_SUCCESS;
}
}
|